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Executive summary 

The use of remote sensing to measure vehicle emissions is not new, dating back to 1971. Remote 

sensing has been used extensively over the last two decades for various purposes around the world, 

including but not limited to identification of high-emitting vehicles, examination of on-road vehicle 

emissions distributions, trend analysis and model validation. 

This study has scoped out and tested the best and most useful ways for validation of the New 

Zealand vehicle emission model, known as VEPM1 using remote sensing data for CO, THC and NOx. 

This was done through an examination of potential issues with the remote sensing data and ways to 

address them, as well as a discussion and demonstration of various (possible) ways to compare 

remote sensing data with VEPM emission factors. 

Testing the overall accuracy of vehicle emission models is challenging, as the ‘true’ emission values in 

urban networks are unknown and cannot practically be determined by measurement. As a 

consequence, VEPM predictions and remote sensing data are both independent estimates of the true 

vehicle emissions in a road network.  

If both VEPM and the remote sensing data show similar predictions of vehicle emissions, then this 

would increase the level of confidence that VEPM predictions are in fact accurate. If not, then VEPM 

model predictions and/or remote sensing estimates are not accurate. More validation work using 

other independent methods such as tunnel studies, near-road air quality sampling etc., and further 

analysis are required to determine where the (main) errors occur (specific traffic situations, specific 

vehicle classes, etc.). 

Laboratory measurements (‘bag’ and ‘modal’, engine and chassis dynamometer) using drive cycles 

have remained the prominent empirical base for vehicle emission model development around the 

world, although this is changing now with increased use of PEMS (portable emissions measurement 

system). Other methods such as remote sensing, tunnel studies and on-road or near-road 

measurement and modelling have been commonly used for emission model validation purposes, and 

have contributed to an increased understanding of model accuracy and real-world emissions 

behaviour of vehicles.  

There are, however, specific issues with and points of attention for all emission measurement 

methods. The strengths and weaknesses of both laboratory measurements, on which VEPM is based, 

and independent remote sensing measurements have therefore been examined. This is important to 

ensure that a valid comparison of methods is made and to better understand where potential 

differences may come from.  

There are fundamental differences between emission estimates derived from remote sensing 

measurements and laboratory-based model predictions that need to be accounted for in a validation 

study.  

  

                                                           
1  The Vehicle Emission Prediction Model. (http://air.nzta.govt.nz/vehicle-emissions-prediction-model) 
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Nine fundamental differences were identified and discussed in detail in this study: 

 1. Different sampling strategies 

 2. Different measurement techniques 

 3. Different determination of emission factors 

 4. Different levels of detail in the on-road fleet mix 

 5. Different spatial and temporal resolution regarding driving conditions 

 6. Different meteorological (test) conditions 

 7. Different fuel quality 

 8. Different impact of ageing effects 

 9. Different impact of vehicle loading 

Vehicle emission models are often used beyond their intended purpose and capabilities, resulting in 

errors. This may partly be explained by lack of understanding of the model development process, the 

underlying empirical data and the exact definition of variables used by the model, and clear 

documentation of these matters.  

VEPM’s intended use is for emission estimation at road network level. The use of ‘average speed’ as 

the only variable to capture the impact of driving conditions on emission levels can introduce 

significant errors in the emission predictions with the same mean speed, but with different levels of 

speed fluctuation (i.e. different drive cycles or driving patterns). For local assessments (e.g. street 

level) substantial errors up to factor of four in emission predictions have been reported for speed-

time traces with the same mean speed but with different levels of speed fluctuation.  

More detailed vehicle emission models in addition to VEPM will be needed in the future for adequate 

emission predictions at the local level in New Zealand. This study has developed and presented a 

possible ‘hybrid’ approach to develop such as model, using remote sensing data.  

A proof-of-concept hybrid model was created to illustrate how the rich New Zealand remote sensing 

database can be used to develop a genuine New Zealand emissions model, which can be used to 

‘validate’ VEPM, but also allows for emission predictions at a significantly higher resolution in space 

and time than VEPM. The hybrid model links binned remote sensing data with CO2 prediction 

algorithms through an appropriate vehicle classification scheme and use of a proxy variable for 

engine power (VSP).  

We conclude that a validation study that takes into account the issues listed above will be capable of 
both validating the current VEPM model and allowing the development of a hybrid model specific to 
New Zealand that will give higher spatial and temporal resolution, as well as increasing confidence in 
predictions.
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1 Introduction 
Road traffic is an important global source of air pollution and greenhouse gas emissions and its 

significance is increasing. Around the World, air quality and greenhouse gas emission impacts of road 

traffic are commonly evaluated using transport and emission models and, in the case of air pollution, 

dispersion and exposure models. The scale of application of such models ranges from a single point 

near a road to entire urban or regional road networks, and even national or global scale. 

Overseas road traffic emission inventory models such as COPERT in Europe and Australia and 

MOBILE/MOVES and EMFAC in the United States are well-known and often used in practice. To 

account for the unique New Zealand vehicle fleet characteristics, New Zealand has developed its own 

traffic emission inventory model called VEPM (Karr et al., 2008). The latest version of the NZ vehicle 

emission inventory model VEPM, version 5.1, was released in June 2013 

(http://air.nzta.govt.nz/vehicle-emissions-prediction-model). 

In VEPM mean emission factors are expressed as grams per vehicle kilometre of vehicle travel 

(g/veh.km). The emission factors are a function of average speed, where average speed is defined as 

the overall speed on a section of road or for an entire journey. As VEPM is derived from European 

models (COPERT, NIAE), VEPM is (indirectly) developed from – and reflects – overseas laboratory 

emission measurements on a sample of European vehicles involving various European drive cycles.  

In comparison, COPERT Australia was developed specifically for Australian conditions as it was shown 

previously that direct application of COPERT and other models led to large prediction errors (Mellios 

et al., 2013; Ntziachristos et al., 2013; Smit and Ntziachristos, 2012; 2013). This was made possible 

due to a large database of empirical laboratory emission measurements of Australian vehicles. A 

similar database is not available in New Zealand. However, New Zealand has a large amount of useful 

remote sensing data that can be used to verify VEPM predictions or for model development, as will 

be discussed in this report. 

An internal review of the VEPM background documentation (Karr et al, 2008) at NIWA by Robin Smit 

(Smit, 2012) concluded that the report is well-written and generally follows a logical process. 

However, given the many assumptions, intermediate computation steps (e.g. equivalency 

determination) and the use of a number of overseas models that underpin VEPM – which are 

inevitable due to a general lack of empirical NZ data – validation is essential to test the adequacy of 

VEPM model performance. 

This requirement is not restricted to VEPM. As all models are simplifications of reality, assessment of 

prediction accuracy is essential for all. This is important as poor emission forecasting will cause poor 

policy decisions if left unchecked. There are various ways to (partially) validate motor vehicle 

emission models and they include tunnel studies, near-road concentration measurements, on-board 

emissions testing, laboratory emissions testing and remote sensing. However, all these methods have 

their own strengths and weaknesses (Smit, Ntziachristos and Boulter, 2010), and the weaknesses in 

particular must be explicitly considered in any validation study.  
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2 Objectives and Outcomes 
The main objective of this project is to scope out and test the best and most useful ways for 

validation of the New Zealand vehicle emission model VEPM2 using remote sensing data for CO, THC 

and NOx.  

Validation is defined as the process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended use of the model using 

independent datasets. 

This report presents the results for Phase 1 of the scoping project in which the focus is on method 

development and testing.  

It is noted that the report contains much information, presented in a dense format, so a basic 

knowledge of vehicle emission assessment on the part of the reader is recommended. 

The project will generate the following outcomes: 

1. Discuss the New Zealand remote sensing data and VEPM, and their potential strengths 

and weaknesses. 

2. Examine the relevance of potential issues with the RSD data and ways to address 

them. 

3. Discuss and demonstrate various (possible) ways to compare remote sensing data with 

VEPM emission factors. 

4. Promote the use of RSD data to improve vehicle emission modelling in New Zealand. 

This report will discuss the strengths and weaknesses of both laboratory and remote sensing 

measurements. This is important to ensure that a valid comparison is made between VEPM and 

remote sensing data and to better understand where potential differences may come from.  

Testing the overall accuracy of vehicle emission models is challenging, as the ‘true’ emission values in 

urban road networks are unknown and cannot practically be determined by measurement; i.e. this 

would require continuous emission measurement of all vehicles in the area and period concerned.  

As a consequence, VEPM predictions and remote sensing data are both independent estimates of the 

true vehicle emissions in a road network. However, if both VEPM and the remote sensing data show 

similar predictions of vehicle emissions, then this would increase the level of confidence that VEPM 

predictions are accurate. If not, then either one or both VEPM predictions or remote sensing 

estimates are not accurate. In this case, more validation work, using other independent methods 

such as tunnel studies, near-road air quality sampling etc., and further analysis are required to 

determine where the (main) errors occur (specific traffic situations, specific vehicle classes, etc.). 

  

                                                           
2 Vehicle Emission Prediction Model. 
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3 Differences between VEPM and remote sensing 
Laboratory measurements (‘bag’ and ‘modal’, engine and chassis dynamometer) using drive cycles 

have remained the prominent empirical base for vehicle emission model development around the 

world (e.g. Smit et al., 2009).  

Other methods such as remote sensing, tunnel studies and on-road or near-road 

measurement/modelling have been commonly used for emission model validation purposes, and 

have contributed to an increased understanding of model accuracy and real-world emissions 

behaviour of vehicles. There are, however, some issues with these approaches that complicate its 

direct use in emission models, such as a limited range of operating or traffic conditions (e.g. high 

speed driving conditions in tunnels). The strengths and weaknesses of remote sensing and laboratory 

vehicle emissions testing are explored in detail in this section. 

The use of remote sensing to measure vehicle emissions is not new, dating back to 1971 when 

experiments were conducted in the US to construct a remote exhaust measurement system. Since 

then a number of remote sensing systems have been developed, in most cases with very similar 

operating principles (e.g. Bishop et al., 1989; Guo et al. 2007; Gala and De la Fuente, 2012). 

Disagreement between vehicle emissions model predictions and tunnel measurements in the US in 

the 1980s-1990s, as well as an initial interest to supplement or even replace routine emissions 

inspections, facilitated increased use of a remote sensing device (RSD) as an independent approach 

to measure real-world vehicle emissions (e.g. Eisinger and Wathern, 2008). Remote sensing has been 

used extensively over the last two decades or so for various purposes around the world. The 

following applications have been reported in order of occurrence: 

 Identification of high-emitting vehicles (‘maintenance and repair programs’) or low-emitting 

vehicles (‘clean screening’), and their emissions behaviour.  

 Examination of on-road vehicle emissions distributions.  

 Assessment of the impacts of ageing on vehicle emissions, inspection and maintenance 

programs and changes in vehicle emission control durability over time. 

 Assessment of impacts of specific vehicle types, fuel types and emission control technologies3 on 

vehicle emissions. 

 Trend analysis of on-road fleet emissions. 

 Validation of commonly used vehicle emissions models (e.g. COPERT, MOBILE).  

 Comparison of remote sensing measurements with tunnel studies, near-road air quality studies 

and laboratory measurements using drive cycles. 

 Use of remote sensing as a public vehicle emissions information system. 

 Developing fuel-based emission inventories as an alternative to travel-based (VKT) emission 

inventories. 

 Assessment of the impact of vehicle operating conditions on average pollutant-to-CO2 

concentration ratios. 

  

                                                           
3 Including non-certification ‘defeat’ algorithms in the engine management system which lead to elevated real world emissions (see e.g.  
Jiménez et al., 2000; Burgard et al., 2006). 
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Comparing remote sensing data with VEPM predictions is not straight forward, and a number of 

issues need to be considered and addressed before a valid comparison can be made. These aspects 

are summarised and discussed in this section.  

There are fundamental differences between emission estimates derived from remote sensing 

measurements and laboratory-based VEPM predictions that need to be accounted for in the 

validation study: 

1. different sampling strategies; 

2. different measurement techniques;  

3. different determination of emission factors; 

4. different levels of detail in the on-road fleet mix; 

5. different spatial and temporal resolution regarding driving conditions; 

6. different meteorological (test) conditions; 

7. different fuel quality; 

8. different impact of ageing effects; and 

9. different impact of vehicle loading. 

These points are critically reviewed and further discussed in this section. For the validation study it is 

important to know if both approaches introduce systematic errors (bias) in measured emission rates 

and to control, to the extent possible, for factors that (may) introduce bias. 

3.1 Sampling strategy 

Remote sensing and laboratory testing use a different approach to vehicle emissions data collection. 

Remote sensing typically collects ‘snapshot’ on-road emissions data from a relatively large sample of 

moving vehicles, whereas laboratory testing collects drive cycle (trip) based emissions data from a 

relatively small sample of both stationary and moving vehicles under controlled conditions.  

3.1.1 Remote sensing 

Measurement objectives4 and prevailing site conditions determine location, method and time of 

sampling with remote sensing. For emission model validation, emission trend analysis or (fuel-based) 

emission inventory development, remote sensing data for multiple sites are required.5 These sites 

need to be representative of the range of traffic and weather situations in (urban) areas, to the 

extent this is feasible. In contrast, high-emitter or ‘clean vehicle screening’ requires more narrowly 

defined measurement conditions, e.g. in terms of specific operational conditions such as hot engines 

and emission control systems and a limited range of engine loads. 

 

                                                           
4 For instance, high-emitter identification or characterisation of on-road fleet emissions. 
5 It has been shown that site selection can strongly influence remote sensing measurements both in New Zealand (NZTA, 2014) and 
overseas (e.g. CRC, 2006). Hence, the use of RSD data from multiple sites is an essential requirement for an emission model validation 
study. 
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Remote sensing measurements are usually made during daytime in dry weather conditions at non-

dusty single lane locations, where vehicles are under light to moderate acceleration conditions and 

on a positive road gradient with a warm engine and emission control system (hot running 

conditions). Remote sensing can record emission levels for a relatively large number of vehicles, but 

the system can produce a significant portion of invalid data, and may exclude relevant vehicle types 

and traffic conditions. 

Invalid data 

According to Bishop and Stedman (2008) the proportion of invalid measurements is typically 20-30%, 

but significantly lower capture rates have been reported. For instance, Rhys-Tyler and Bell (2012) 

reported 55% invalid measurements, and Mazzoleni et al. (2004b) even more than 70% invalid 

measurements.  

Measurement issues occur in specific situations, for instance: 

 Stationary vehicle drive conditions (idling). 

 Vehicle speeds outside the range of 10 to 60 km/h.6  

 Insufficient measurable CO2 in the plume due to e.g. bicycles, trucks, decelerating vehicles 

(including engines that use ‘fuel cut-off’ strategies) or strong wind conditions that will disperse 

the plume rapidly7.  

 Measurements outside preset pre-specified concentration ranges or preset pollutant-to-CO2 

ratios. 

 Failure to identify pre-car and post-car periods to detect the presence of a vehicle (‘beam 

blocks’) on busy roads where vehicles pass in rapid succession.8  

 Failure to identify specific vehicle types, such as cars with caravans.9  

 Heavy rain, snow or dusty roads, which inhibit light intensities and introduce additional 

measurement noise. 

Excluding specific vehicle types 

The RSD setup may not detect specific vehicle types, such as articulated trucks and buses. These 

heavy-duty vehicles (HDVs) have a disproportionate contribution to fleet emissions for several 

pollutants. As a consequence, accurate and comprehensive quantification of emissions from these 

vehicles is essential. However, remote sensing devices are normally set up at ground level with a 

sensing beam height of 20-45 cm. This setup is fine for light-duty vehicles (LDVs), but it can exclude a 

significant portion of heavy-duty vehicles with vertical exhausts or other oriented exhaust pipes.  

This is the case in the US and Australia, but not in Europe where most trucks have ground level 

exhaust systems. The situation in New Zealand is a mixture of the two, and a portion of the on-road 

                                                           
6 The viable instrument range is 10 to 120km/hr, but at high speeds vehicles may have sampling times that are significantly shorter than 0.5 
seconds (50 data points at 100 Hz sampling frequency). 
7 There are generally more invalid readings in situations with lower emission levels (e.g. low or negative grades, cruising or decelerating 
vehicles). 
8 For instance, FEAT requires more than 0.5 seconds between unblock and block, otherwise it will ‘restart’. Interrupted data collection 
could be caused by e.g. trailers. 
9 Cars with caravans may be measured accurately, but the caravan prevents number imaging, so the measurement cannot be allocated to a 
vehicle. 



 

The use of remote sensing to enhance motor vehicle emission modelling in New Zealand  13 

 

truck and bus with ground level exhausts fleet have been measured using remote sensing (Bluett, 

Kuschel and Unwin, 2010). It is recommended that any future remote sensing programs in New 

Zealand include trucks and buses with vertical exhausts. 

This will impose a few new challenges to RSD program design. For instance, trailers will interfere with 

the measurements as they produce well-dispersed plumes causing an issue for measurement at the 

rear of the vehicle. As a consequence, modifications to the RSD setup are required. These include the 

use of multiple RSDs, the use of scaffolding to raise the detector height for HDVs with vertical 

exhaust configurations and lowering the measurement beams to read the plume under HDVs with 

low exhausts. Other modifications are specific vehicle detection equipment (manual or automated) 

and detection algorithms, longer scanning times (e.g. 1.0 instead of 0.5 seconds) and data post-

processing procedures (e.g. Jiménez et al., 2000; ESP, 2010).  

Excluding specific traffic conditions 

Procedures are used to automatically filter invalid data from remote sensing measurements.10 There 

is, however, a tendency for invalid readings in particular traffic situations (e.g. low engine power 

conditions, congested conditions), and hence smaller sample sizes, or no data for these conditions. 

As a consequence, there is a risk for biased emission factors if they are derived from filtered remote 

sensing data and applied to situations for which data are not or scarcely available. 

To illustrate this, Jiménez et al. (2000) reported on a remote sensor technique with a long path 

length that was used across a four-lane high speed highway. Although this technique had its own 

challenges (wind effects, overlapping vehicles, etc.), the NO/CO2 distribution was found to be 

substantially higher as compared with RSD measurements made at a location where vehicles just left 

a weighing station. The effect of ‘defeat devices’ was argued to be the main cause for the difference. 

Defeat devices optimise fuel economy at the expense of NOx emissions and are typically activated 

after several minutes of high speed driving. So they were expected to be activated on the highway, 

but not at the other location. This is important because, whatever the technical reason, it shows that 

care is needed by translating ‘urban’ remote sensing measurements to freeway conditions. 

Modification of driving behaviour 

A potential source of bias is modification of ‘normal’ driving behaviour at RSD locations. This may 

include drivers releasing the accelerator and reduce speed when they see the RSD (e.g. Bishop et al., 

2001; Kraan et al., 2012), which can affect emissions. For instance, it may cause short-lived HC 

emission spikes, which are not representative of the general low emission levels of modern vehicles. 

This could create a bias in measured HC/CO2 ratios.  

Emission types 

A generally recommended remote sensing site is an uphill, curved off-ramp from a freeway. As a 

consequence, remote sensing is generally assumed to exclude evaporative HC emissions or cold start 

emissions, although there are some exceptions. For instance, Sjödin and Lenner (1995) measured 

emissions at four sites and found that CO and HC emissions are substantially elevated at urban sites 

with an expected significant proportion of cold start vehicles.  

                                                           
10 For instance, the FEAT system uses preset minimum CO2 concentration values and specific CO, propane and NO concentration values. 
These are combined into pollutant to CO2 ratio limits that are used to flag invalid measurements. 
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Few researchers have attempted to determine which specific vehicles operate in cold start mode. 

Monateri et al. (2004) report on the (manual) use of an infrared camera to measure the heat 

signature of passing vehicles (exhausts, tyres, underbody) and determine if a vehicle is in cold start 

mode. CRC (2006) used a less thorough approach and simply excluded specific hours of RSD data for 

sites where “5% of newer vehicles had excessive HC emissions”.  

Cold start emissions, and CO and HC in particular, are of increasing relative importance, due to strong 

reduction in hot running emissions on a per vehicle kilometre basis (Smit and Ntziachristos, 2013). As 

a consequence, it is important for a validation study to examine the (expected) proportion of cold 

start vehicles in the remote sensing measurements for each location, and to determine if the 

measured emissions are likely to be hot running emissions, or not. This can be done, for instance, 

through analysis of license plate information and determination of the distance and likely travel time 

between registration address and RSD location. If travel time exceeds a few minutes it can be 

assumed that the vehicle has negligible cold start emissions.11 

Although several remote sensing studies explicitly state that remote sensing only measures exhaust 

emissions (e.g. Pokharel et al., 2002; Mazzoleni et al., 2004a; 2004b; Bishop et al., 2012; Fujita et al., 

2012), this is incorrect. In fact, St. Denis and Roeschen (2012) actually used remote sensing to identify 

vehicles with high evaporative emissions (e.g. fuel leaks), which was verified with a number of 

evaporative SHED tests showing that evaporative emissions are measured with RSDs. It is unclear, 

however, to what extent evaporative running loss and resting loss VOC emissions12 are captured in 

the ‘exhaust plume’. But it can be expected that HC emissions measured with remote sensing are 

higher compared to hot running exhaust emission factors in VEPM, as they will also include some 

evaporative emissions.  

Finally, although remote sensing has not been used extensively (yet) to determine PM emissions 
from motor vehicles, it is possible that non-exhaust PM emissions are to some extent included in the 
measurement. 

3.1.2 Laboratory 

Laboratory measurements are usually conducted in a highly (quality) controlled environment, which 

includes predefined and repeatable driving behaviour (drive cycles), and explicit measurement of 

most relevant types of emissions. This includes hot running, cold start, warm start, evaporative 

diurnal and evaporative hot soak emissions, but typically excludes running loss emissions and 

emissions of non-exhaust particulate matter due to tyre, brake and road wear.  

Laboratory measurements can be influenced and biased by e.g. high emission events (Smit, 2013a). 

This can result in clipped emission traces in e.g. modal testing, but also affect the more robust bag 

sampling measurements. This is evidenced by some remarks made in the NISE2 study where about 

400 petrol cars were tested (Orbital, 2009): 

                                                           
11 There are different factors that contribute to cold start emissions and they differ in magnitude as well as duration of impact. At an 
ambient temperature of about 20°C, hot running conditions should generally be achieved for all relevant vehicle components  
(engine, transmission, catalyst) within 15 minutes of driving. However, catalyst ‘light-off’ conditions and tight control of the air-to-fuel 
ratio, which together largely determine the magnitude of cold start emissions, will be achieved much faster than this, i.e. typically within a 
minute of engine start for modern vehicles and a maximum of a few minutes for older technology vehicles (Smit and Ntziachristos, 2013). 
12 Evaporative vehicle emissions are emissions that emanate from the fuel system. Diurnal and hot soak emissions are not captured with 
remote sensing as these emissions are generated when vehicles are parked. This is less clear for running loss emissions, which are a result 
of heating of the fuel system during vehicle operation and resting-losses, which are due to permeation of plastic/rubber materials in fuel 
system (tanks, lines, fittings) and liquid leaks. 
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 “PM2.5 emissions on the first phase of the ADR37 test were the highest recorded on this 

project, before the particulate sampling system stopped due to overloading”, and 

 “THC and CO emissions were at levels too high to be recorded for some test phases”.  

So laboratory measurements, and the models developed from them, can exclude high-emitters from 

the emissions database when the measurement equipment cannot handle excessive emission levels. 

This aspect is compounded by the relatively small sample sizes typical for laboratory testing due to 

costs, with an associated risk of inadequately reflecting the proportion of high-emitters (with highly 

variable emission levels) that occur in the on-road fleet.  

There are more subtle factors that may create bias, but they are difficult to quantify. An example is 

the representativeness of gear shift behaviour of vehicle operators in laboratory conditions to gear 

shift behaviour in on-road vehicle fleets. Another example is how well dynamometer settings and 

loading algorithms reflect on-road driving conditions. 

The laboratory sample may also not (entirely) reflect the composition of the in-service vehicle fleet 

due to issues with sourcing test vehicles and achieving truly random vehicle samples. For instance, it 

may be geared towards newer vehicles (e.g. government fleets, rental vehicles). 

3.1.3 Conclusion 

It is not possible to make a statement about which measurement method leads to more accurate 

vehicle emission predictions because both methods have particular strengths and particular 

challenges that could introduce bias in emission predictions based on these measurements. Rather, 

the comparison, and possible combination, of different measurement methods (laboratory and 

remote sensing, but also on-board, tunnel, near road, etc.) should be the focus of developing 

accurate vehicle emission models. 

3.2 Measurement techniques 

Remote sensing uses different measurement methods as compared with standard laboratory testing 

on which VEPM is based, and these differences need to be considered when a validation study is 

conducted.  

3.2.1 Remote sensing 

Remote sensing system uses the principle that the majority of gases will absorb light at particular 

wavelengths. It measures on-road emissions by absorbance of ultraviolet (UV) and infrared (IR) light 

across an open (optical) path using wave-length specific detectors for different air pollutants. The 

remote sensing device (RSD) consists of an IR component for detecting CO, CO2 and HC, together 

with an UV spectrometer for measuring NO. Remote sensing systems have evolved over time and 

have become more accurate and less sensitive to interference (e.g. Popp et al., 1999; Sjödin and 

Andréasson, 2000; Bishop et al., 2001; Mazzoleni et al., 2004b). More recently, other pollutants can 

be measured with RSD such as PM (smoke), NH3, NO2 and SO2 (e.g. Jiménez et al., 2000; Mazzoleni et 

al., 2004a; 2004b; Sjödin and Jerksjö, 2008; Carslaw and Rhys-Tyler, 2013). A typical setup is shown in 

Figure 3-1 and Figure 3-2.  



 

16 The use of remote sensing to enhance motor vehicle emission modelling in New Zealand 

 

 

Figure 3-1: Example of a remote sensing measurement setup schematic. (Source: NIWA, 2008a) 

 

 

Figure 3-2: Photo of remote sensing measurement setup including speed/acceleration bar and a digital 
camera. (Source: Gala and De la Fuente, 2012) 

The source/detector unit is positioned on one side of a single-lane road, with a corner cube reflector 

on the opposite side. Beams of IR and UV light are passed across the roadway into the corner cube 

reflector and returned to the detection unit. A reference detector monitors a portion of the 

spectrum where no exhaust gas compounds are absorbed to correct measured pollutant signals for 

fluctuations in transmitted intensity due to e.g. particulate matter or fluctuations in source intensity. 

Vehicles are identified through video or camera imaging of license plates, and driving behaviour is 

quantified by upstream measurement of speed and acceleration. License plate information is 
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matched with vehicle registration data to obtain specific vehicle information such as vehicle type, 

year of manufacture, fuel type, and so on.  

The remote sensor used by NIWA (ESP4000EN, ESP Inc. Denver, USA) reports concentration levels in 

the exhaust gas, i.e. CO2 (%), CO (%), PM (mg/m3), HC (ppm) and NO (ppm), corrected for water and 

excess oxygen not used in the combustion process. However, the exhaust plume path length and the 

density of the observed plume are highly variable from vehicle to vehicle and are a function of the 

height of the vehicle’s exhaust pipe, wind direction and speed, and turbulence behind the vehicle, 

amongst other factors. The RSD can therefore only reliably measure ratios of CO, HC and NO to CO2. 

These ratios are assumed to be constant in a particular vehicle’s exhaust plume. Due to the short 

time period involved in the measurement13, this is expected to hold true for reactive species such as 

NO as well. However, RSD data are naturally noisy and sufficiently large sample sizes are required to 

obtain significant results. 

The remote sensing measurements include a ‘background correction’ by subtracting the 

concentration measurements just before the ‘beam block’14 (detecting vehicle presence) from the 

concentration measurements just after the ‘beam block’. It is unclear, however, to what extent 

mixing of emission plumes from different vehicles or residual plume interference affects overall 

remote sensing measurements.  

In this respect, Stephens and Cadle (1991) examined the extent to which remnants of plumes from 

previous vehicles affect accuracy. These researchers analysed and classified their remote sensing 

data as a function of time between measurements and whether a previous car was a high or low 

emitter of CO. The results are shown in Figure 3-3.  

 

Figure 3-3: Examination of residual plume interference. (Source: Stephens and Cadle, 1991) 

 

                                                           
13 Each ratio reported is the mean of half a second of 10 ms interval measurements, giving a sample size of approximately 50 values for 
each reported ratio. 
14 For instance, 0.2 seconds or 20 data points at 100 Hz sampling frequency (e.g. Bishop and Stedman, 1996). 
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Their results show that the median CO measured in exhaust plumes is significantly higher when 

previous cars have high CO emissions (> 5%) and time intervals are less than 4 seconds. A later study 

(Mazzoleni et al., 2004b) remarked that ‘carryover effects’ when a clean vehicle follows a dirty 

vehicle were “not evident in the data”, but did not further elaborate how this was determined.  

Remote sensing measurements are subjected to automated error checking and estimation 

algorithms with preset error limits. An example is a set of non-linearity testing algorithms aiming to 

detect mixing of two plumes of (significantly) different concentrations, and reject these 

measurements. For instance, Bishop et al. (1989) fitted a linear regression model where CO2 

concentration is the predictor variable and the pollutant concentration (CO) the response variable. 

The slope was then used to determine the CO/CO2 ratio, but the slope standard deviation was not 

allowed to exceed ±20%, and a minimum CO2 concentration was required.  

Nevertheless, residual plume interference may still introduce some bias in remote sensing 

measurements by inclusion of small amounts of residual emissions, but the relevance of this effect is 

unclear. It is therefore recommended that the New Zealand RSD data are examined to see if a similar 

effect can be observed as in Figure 3-3. 

Instrument calibration is performed by comparing measured ratios with those in a puff of certified 

gas containing a mixture of e.g. CO, NO, propane and CO2. Calibration should be performed regularly 

to account for variations changes in meteorology and instrument sensitivity. Reported calibration 

frequencies vary from hourly (Carslaw et al., 2011b; Borken-Kleefeld and Chen, 2015) to twice daily 

(Burgard et al., 2006; CRC, 2007). 

As compared with the controlled environment of laboratory measurements, it is clearly more 

challenging for remote sensing to measure vehicle emissions accurately. For instance, exhaust 

emissions are diluted rapidly and the RSD needs to strike the right balance between measuring 

emissions from all on-road vehicles and preventing incorrect or inaccurate measurements due to low 

signal-to-noise ratios.  

RSD measurements can also be sensitive to equipment vibration affecting beam alignment due to 

moving vehicles shaking the roadway or producing air pulses (e.g. Bishop and Stedman, 1996). For 

instance, Mazzoleni et al. (2004b) suggested a positive offset/bias in remote sensing PM 

measurements is caused by this vibration. Stephens and Cadle (1991) also mentioned possible bias of 

infrared emissions from hot exhausts which will affect CO and CO2 emission measurements. An 

experiment with the infrared source off detected infrared emissions from 8% of the vehicles. 

Given the challenging testing environment, it is essential to perform thorough quality checks on 

remote sensing data before it is used in the validation study. This is in addition to the internal and 

automated filtering and verification procedures already used by the RSD. This can be done in 

different ways. For instance by comparing emission measurements for each site over time and 

between sites (e.g. binned by vehicle year of manufacture, also see discussion in section 3.2.3 

regarding offsets), or as was shown in Figure 3-3, to ensure measurement consistency and identify 

any detector problems that may have occurred for specific pollutants. 
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3.2.2 Laboratory 

Figure 3-4 shows an example of a typical laboratory vehicle emission measurement setup. 

 

Figure 3-4: Example of Laboratory Measurement Setup. (Source: Orbital, 2009) 

Laboratory emissions are measured with standard pollutant analysers. Exhaust emissions are 

typically sampled from a dilute proportion of tailpipe emissions using a CVS (Constant Volume 

Sampling) system. This sample is stored in a sample bag. The bag usually samples the emissions for a 

complete phase of the test (i.e. drive cycle or parts thereof). These results are background corrected 

for ambient concentration levels.  

Exhaust emissions results can also be measured as “modal” data. In this case, the emissions are 

typically sampled raw at a 1-10 Hz measurement frequency using exhaust gas analysers with high 

range detectors. No compensation is made for ambient levels for these raw readings. The integration 

of these data should give values similar to the level measured in the bag, and this is often used as a 

data quality verification step (Smit, 2013a). 

Laboratory measurements typically use FID (Flame Ionisation Detector) for THC measurements, 

Chemiluminescence for NOx (NO, NO2), a gravimetric filter method for PM and NDIR (Non-Dispersive 

Infra-Red) for CO and CO2 measurements. Laboratory grade analysers tend to use expensive high 

precision systems. Lower-cost systems are also available and used for e.g. emission test and repair 

programs, and whilst they are of the same type, they will generally have less accuracy, precision, 

repeatability and stability.  

Laboratory measurements have their own challenges and issues. For instance: 

 PM measurements may be affected by sampling issues such as loss, condensation, and other 

factors rendering the result unreliable.  

 FID is regarded as the most accurate equipment for detecting hydrocarbons. They are very 

sensitive to HCs, and the FID response tends to be reasonably linear across a wide range of 

concentrations. FIDs are also insensitive to H2O, CO2, SO2, CO and NOx, preventing 

interference issues. However, FID will not adequately detect all hydrocarbon species present 

in vehicle exhaust, which is an artefact. The molecular structure and composition of the gas, 

as well as detector design limitations, will affect the FID response. For instance, 

hydrocarbons that contain other functional groups (e.g. carbonyl, alcohol, amines) are not 

ionized as effectively as compared with pure hydrocarbons, and will give a weaker or no 
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signal. FID responses are commonly assumed to be proportional to molecular weight, but no 

correction is applied for this “non-linearity” in the FID response, i.e. the compound-specific 

response factors are all set to unity (De Saint Laumer et al., 2010). Given the substantial 

variability that is reported for FID response factors (Tong and Karasek, 1984), not correcting 

FID responses can significantly affect the accuracy of reported vehicle emission levels.  

So it is important to realise that even controlled high quality laboratory measurements are not 

equivalent to ‘true’ vehicle emission values, but are estimates of them. 

3.2.3 Comparison of laboratory and remote sensing vehicle emission testing 

A literature review was conducted to find studies that compared remote sensing with dynamometer 

based vehicle emissions testing under different test conditions. Older studies are less relevant for the 

VEPM validation study, as remote sensing equipment has continued to evolve and improve over 

time. On the other hand, fleet emissions have substantially reduced as time progressed, posing new 

challenges for remote sensing measurements. So the level of agreement between remote sensing 

and laboratory tests may or may not have been better in the past. Older studies are included here for 

the sake of completeness. 

It is noted that the RSD results will to some extent also depend on the actual device that is used. For 

example, Stephens and Cadle (1991) compared two different remote sensing instruments and found 

a mean instrument-to-instrument ratio of 0.88 and a small offset for measured CO/CO2 ratios. Later 

studies also reported differences between different remote sensing techniques (Mazzoleni et al., 

2004b). 

Pre-2000 comparison studies 

 Bishop et al. (1989) compared remote sensing data for CO, expressed as grams CO per gallon 

of fuel, with results of FTP dynamometer tests and reported a reasonable correlation 

coefficient of 0.81. 

 Sjödin et al. (1997) compared remote sensing results for CO and HC with idle tests and 

dynamometer tests and concluded that remote sensing may be a useful tool to identify high-

emitting cars on the road that no longer comply with (dynamometer based) legislative 

standards, but that correlation with the idle test was very poor. Poor correlation with idle 

tests have also been reported in later studies (Mazzoleni et al., 2004a). 

 TRL (1998) directly compared RSD measurements with dynamometer testing, but the focus 

was on the ability to detect high-emitting vehicles, and not the accuracy of RSD 

measurements. The data presented in this report show that CO, HC and NO RSD 

measurements generally follow the trend of dynamometer measurements, but that there is 

a substantial amount of scatter. An example is shown below for CO (Figure 3-5). It is noted 

that a direct comparison is not possible due to the difference in units (g/km versus %CO): 
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Figure 3-5: Dynamometer versus RSD test results (CO). (Source: TRL, 1998) 

Post-2000 comparison studies 

Yanowitz, McCormick and Graboski (2000) compared remote sensing with the results of tunnel 

studies and dynamometer tests in the US for HDVs and concluded that there is reasonable 

comparability of HDV emission factors (g/l fuel) between the three methods. Taking data from Table 

8 in this paper, differences between remote sensing and dynamometer testing are calculated15 to 

vary from -28% to +65% for NOx and from +5% to almost a factor of 2 higher for CO. The variability in 

RSD emission results was larger as compared with the tunnel study data, which is probably due (to 

some extent) to the more narrowly defined traffic conditions in tunnels. 

Pokharel et al. (2000) compared remote sensing CO, THC and NO data with dynamometer I&M data 

(IM240) aggregated to vehicle model year and using g/kg fuel as the comparison variable, and found 

good correlation16 (R2 typically > 0.95).  

                                                           
15 (RSD-LAB)  LAB 
16 Note: these authors actually refer to the coefficient of determination, not (linear) correlation. 
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Figure 3-6: Example of correlation plot for CO between IM240 and RSD for one year.   (Source: Pokharel et 
al, 2000). 

This implies that remote sensing is able to accurately capture trends and changes in vehicle 

emissions due to fleet turnover. There are, however, a few interesting points that emerge from this 

comparison: 

 The slope of the linear regression line is significantly below unity for CO (about 0.6) and HC 

(about 0.4). This implies that remote sensing results tend to be substantially lower than those 

measured with laboratory tests. Pokharel et al. (2000) hypothesized that this may be due to 

differences in vehicle engine load (i.e. driving conditions and grade). For HC the differences 

were explained with the ‘Singer and Harley Factor’, which is discussed later, to correct for the 

difference with FID measurements. The slope for NO was close to unity, but dynamometer NOx 

was directly compared with RSD NO, introducing a small error. 

 There are significant intercepts for the linear regression lines, in particular for HC and NO. This 

suggests that very low dynamometer measurements are not replicated in the remote sensing 

data. The question is if: 

− 1) this offset also shows up in the NZ remote sensing data and is constant for all vehicle 

results, and, if so,  

− 2) this offset is an actual remote sensing artefact or due to other factors such as driving 

conditions? 

Some caution is needed with these results as Pokharel et al. (2000) do not appear to have taken all 

necessary preparation steps needed for a valid comparison (e.g. expressing data as NO2-eq). CRC 

(2003; 2006; 2007), however, does discuss and use a method to remove an artificial offset in the RSD 
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HC measurements due to an ‘optical misalignment’.17 The adjustment is computed as the lowest 

value of either the mode or mean of the newest model year vehicles, which effectively assumes that 

these vehicles emit negligible HC emissions. CRC (2006) also used an offset for RSD CO results for a 

specific data subset. It is recommended that the NIWA RSD data are examined to determine if a 

similar offset exists in the New Zealand data. 

Elder et al. (2011) compared remote sensing data collected at 6 sites in Auckland for 4 cars with 

laboratory measurements using the IM240 drive cycle, as well as steady-state tests. These cars were 

run multiple times (up to 31) past the RSD. A considerable amount of scatter was observed within 

each VSP range for each specific vehicle for both remote sensing and laboratory measurements, with 

often higher variability in the remote sensing data than in the laboratory data. Although the 

repeatability at the same RSD site was good, agreement between laboratory and remote sensing was 

often assessed as being ‘poor’. There are, however, a few comments that can be made here. 

 These researchers compared concentrations (ppm, %) and not pollutant-to-CO2 ratios or fuel-

based emission factors, which would have been a more appropriate statistic. 

 It is unclear to what extent (cold) starts affected the remote sensing results as there is no 

information about vehicle preparation.18 

In any case, the results show that remote sensing data for individual vehicles exhibit a high level of 

uncertainty. This is an issue for identification of high-emitters, which would require multiple RSD 

measurements, but not so much for the validation study, as long as the vehicle sample size is 

sufficiently large and aggregated data statistics are used. 

More aggregated comparisons have been made between laboratory test and remote sensing results. 

For instance, Rhys-Tyler and Bell (2012) compared laboratory measurements over the 11 km long 

NEDC drive cycle for Euro 2, 3 and 4 petrol and diesel cars with VSP-weighted remote sensing data 

(expressed as gram pollutant per kg fuel), reflecting the VSP frequency distribution of the NEDC drive 

cycle. They found large differences up to a factor of 3, but acknowledged that there are various 

significant caveats in the comparison: 

 The RSD only measures NO and not NOx. 

 The laboratory tests reflect new vehicles, whereas the remote sensing includes a mix of 

vehicle ages. 

 An unknown proportion of cold start vehicles in the remote sensing data, whereas all NEDC 

tests include a cold start. 

An important point for the validation study is that vehicle emissions are subject to large levels of 

variability, which is independent of the measurement method used (laboratory, remote sensing, on-

board, etc.). Previous studies (e.g. Supnithadnaporn et al., 2011) have shown that the main source of 

variability is the actual (test) vehicle and that the only way to reduce this variability is to conduct 

multiple tests per vehicle. This high level of variability is no longer “visible” in VEPM predictions as 

regression modelling has smoothed the relationship between e.g. average speed and emission rates. 

This could give the impression that RSD measurements are highly uncertain in comparison with 

                                                           
17 Bishop and Stedman (1996) reported that the wavelength used to measure HC suffers from some interference from gas/particulate 
phase water, which is particularly evident for cold vehicles in cold climates. This may be one of the reasons for this artefact. 
18 Laboratory measurements were taken after the remote sensing tests, so vehicles would have been in hot running mode during 
laboratory measurements, but may be in cold start conditions during remote sensing tests. 
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VEPM predictions. But it is important to realise that the empirical database on which VEPM is based 

also contained similar levels of uncertainty. 

The comparison studies indicate that substantial differences between remote sensing and laboratory 

measurements can be expected at individual vehicle level, but that aggregated emissions data will 

yield reasonable agreement. It is now interesting to see if comparison of remote sensing with other 

measurement techniques supports this conclusion. 

3.2.4 Comparison of remote sensing with other methods 

On-board measurement methods have been compared with remote sensing: 

Lawson et al. (1990) compared the results from on-board measurements (CO, HC, CO2) with remote 

sensing measurements for a single petrol car with a three-way catalyst and found good agreement, 

stability and reproducibility of the two measurements systems. The ratio of means (tailpipe/remote 

sensing) for all 34 comparison measurements was 1.05 with an accuracy of ±10%. The correlation for 

CO was quite similar as the results for NO reported by Kraan et al. (2012) in Figure 3-7. 

Kraan et al. (2012) compared the results from on-board measurements (using Portable Emissions 

Measurement System or PEMS) with remote sensing measurements for a single heavy duty truck 

driving at different speeds and accelerations past the RSD and found “reasonable correspondence” 

between the two methods as shown in Figure 3-7. 

There appear to be no significant issues with the RSD offset, but the slope suggests that RSD 

measures higher NO/CO2 ratios than PEMS at higher NO concentrations. 

 

Figure 3-7: RSD versus PEMS for NO.   (Source: Kraan et al., 2012). 
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A few studies compared remote sensing specifically with tunnel measurements. This comparison is of 

interest as a strength of both methods is the quantification of on-road fleet emissions, including high 

emitting vehicles, although the spatial scale is different.  

 Bishop et al. (2012) found reasonable agreement between fuel-based emission factors (g/kg 

fuel) determined with RSD and tunnel measurements, i.e. the average remote sensing CO, 

HC, and NOx measurements  were 9% lower, 41% higher, and 24% higher than the tunnel 

measurements, respectively.  

 Fujita et al. (2012) also concluded that fleet-averaged CO and NOx emission factors from a 

tunnel during weekends (low number of trucks which were not measured with RSD) agreed 

reasonably well with emission factors derived from RSD measurements, i.e. CO was 8% lower 

and NOx was 33% as compared with the tunnel measurements. 

The on-board and tunnel comparison studies indicate a better agreement with remote sensing 

measurements than comparison with laboratory measurements, even at an individual vehicle level. 

This provides further confidence that use of independent RSD data to ‘validate’ VEPM predictions is a 

reasonable approach. 

3.2.5 Uncertainties around low concentration values 

Motor vehicles become progressively cleaner over time. Accurate detection of low emission levels 

poses challenges to any emission measurement device.  

Smit and Bluett (2011) compared emission distributions of laboratory and remote sensing 

measurements, which show that a substantial proportion of THC (~ 20%) and NO (~ 20%) RSD 

measurements are recorded as zero or negative emission levels19, whereas laboratory measurements 

show low, but not often zero, emission levels. Interestingly, this is not the case for CO where both 

laboratory and RSD measurements show a significant proportion of zero (or slightly negative) 

emission levels (~10-30%).  

RSD has a lower sensitivity and more noise as compared with laboratory measurements, so accurate 

detection of low concentration levels could be a significant issue because the majority of modern 

vehicles typically exhibit low emission levels. It is also important for adequately quantifying vehicle 

emissions in the future, which will likely be dominated by vehicles with very low emission rates.  

To investigate the potential impact of inaccurate measurement of low concentration values with 

RSD, modal (second-by-second) emissions for 8 medium ADR79/00 and ADR79/01 petrol cars 

(equivalent to Euro 2 and Euro 3) were collected. These vehicles were tested in a laboratory over the 

real-world Australian CUEDC-P drive cycle, which is depicted in Figure 3-8.  

                                                           
19 True zero emission plumes will result in 50% negative values and 50% positive values in remote sensing measurements. Hence, negative 
RSD readings should be retained. 



 

26 The use of remote sensing to enhance motor vehicle emission modelling in New Zealand 

 

 

Figure 3-8: Australian CUEDC-P Drive cycle.  

A database with approximately 23,500 second-by-second measured CO, HC, NOx and CO2 emission 

rates (g/s) were created for this purpose. The second-by-second pollutant-to-CO2 ratios were also 

computed and added to the database. The ratios are highly skewed as is shown in Figure 3-9. 

 

Figure 3-9: Modal Pollutant-to-CO2 Ratio Distributions for 8 Medium Petrol Cars (Euro 2/3).  

To investigate the impact of inaccurate measurements at low concentration levels on mean 

pollutant-to-CO2 ratios, different proportions of the modal laboratory emissions test data for CO, HC 

and NOx were replaced with zero values, while CO2 values were retained.  All measured emission 

rates below pre-specified percentile values (10%, 20%, 30%, 40% and 50%) were set to zero and 

mean ratios were recomputed for each of the six VSP bins used by Smit and Bluett (2011). The 

percentage error (ei,p), was computed as follows: 

0,,0,,,,,, )(100 pipixpixpi RRRe   (1) 
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Ri,p,x represents the modified mean pollutant-to-CO2 ratio for VSP bin i, pollutant p and percentile 

value x below which all emission rates were artificially set to zero. Ri,p,0 represents the original 

laboratory data. The results are shown in Table 3-1.  

Table 3-1: Computed errors in mean pollutant ratios as function of zero threshold values (CO/CO2, 
HC/CO2, NOx/CO2) by VSP bin.  

  10% Zero 20% Zero 30% Zero 40% Zero 50% Zero 

VSP < 0 0%, 0%, 0% 0%, -2%, 0% 0%, -5%, 0% 0%, -10%, -1% -2%, -16%, -3% 

0  VSP < 5 0%, -1%, 0% 0%, -2%, 0% 0%, -5%, -1% 0%, -8%, -1% -2%, -14%, -3% 

5  VSP < 10 0%, -1%, 0% 0%, -2%, 0% 0%, -4%, 0% 0%, -8%, -1% -1%, -13%, -2% 

10  VSP < 20 0%, 0%, 0% 0%, -1%, 0% 0%, -3%, 0% 0%, -5%, 0% -1%, -9%, -1% 

20  VSP < 40 0%, 0%, 0% 0%, 0%, 0% 0%, -1%, 0% 0%, -3%, 0% -1%, -5%, -1% 

VSP  40 0%, 0%, 0% 0%, 0%, 0% 0%, -1%, 0% 0%, -1%, 0% 0%, -2%, 0% 

This simulation indicates that the impact of zero versus low emission measurements on the mean 

pollutant ratios is small and typically generates an (underestimation) error within 5%. Only after 40% 

or more of the “lower end” laboratory test data are replaced with zero values will the error in the 

mean value be higher than 5%, and then only for HC/CO2 ratios.  

The lower errors in mean CO and NOx ratios are caused by their modal emission distributions (Figure 

3-9). Measured CO and NOx emission rates both have a significant proportion of zero or close to zero 

values in the laboratory emissions data. This is not the case for THC where sorted pollutant ratios 

increase more steadily from the start. As a consequence, the impact of replacing low pollutant ratios 

for THC with zero values, only has a significant impact on mean values for this pollutant. 

3.2.6 Specific issues with NOx and HC 

There are a number of incompatibility issues between laboratory and remote sensing techniques 

with NO and THC measurements in particular, which require further data preparation steps. These 

steps will be discussed further in Section 6.2. This will bring the RSD data and laboratory based 

emission factors on a more even footing in terms of definitions and differences in measurement 

methods and equipment. 

NOx definition 

Most remote sensing studies have used RSDs that measure NO only, whereas laboratory 

measurements relate to the sum of NO and NO2 (i.e. NOx, expressed as NO2 equivalents). Direct use 

of NO data from RSD would therefore result in an underestimation (bias) of RSD NOx emission rates 

(e.g. Bishop et al., 2001; Ekström et al., 2004). Therefore, two steps are needed to properly define 

NOx in the validation study:  

1. Apply a correction factor to the RSD data to account for primary NO2 emissions.  

2. Express the RSD data as NO2 equivalents. 

With respect to the first point, Smit and Bluett (2011) used a scaling factor of 1.1, which assumes an 

average NO2 to NOx mass ratio of 0.10. However, there is a trend of increasing NO2 to NOx mass 

ratios, and this is particularly the case for diesel vehicles where NO2 to NOx mass ratios as high as 

0.75 have been reported (Gense et al., 2006). For a validation study a plausible range of scaling 
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factors should be used for different vehicle technology classes. An example is given below, reflecting 

RSD data collected by Sjödin and Jerksjö (2008): 

 Petrol cars exhibit low NO2/NOx shares in the order of 2-5%, which are independent of 

emissions standard (pre-Euro to Euro 4). 

 Diesel cars show increasing NO2/NOx shares as a function of emissions standard, i.e. 14% 

(Euro2), 47% (Euro 3) and 55% (Euro 4). 

 Diesel trucks show increasing NO2/NOx shares as function of emissions standard, i.e. 25-30% 

(Euro II), 30-52% (Euro III), 48% (Euro IV), 38% (Euro V). 

 CNG buses have a reported a value of 6%. 

Similar data can be found elsewhere (e.g. EEA, 2007; Kousoulidou et al., 2008; Carslaw et al., 2011a). 

For the validation study it is suggested that a range of primary NO2 proportions are computed for 

each site depending on the local fleet composition, which is accurately determined with the remote 

sensing equipment. 

NOx conversion 

Another aspect that may affect RSD NO measurements is the extent to which NO is converted to NO2 

in the exhaust plume (and hence not detected). This would clearly depend on environmental factors 

such as ozone concentration, mixing characteristics and the speed of NO to NO2 conversion. No 

useful quantitative information could be found to assess the significance of this. 

HC emissions - FID versus NDIR 

Remote sensing measures total HC emissions using NDIR, which is commonly calibrated with 

propane, although others such as hexane have been used (e.g. Ekström et al., 2004). However, a 

large and complex range of hydrocarbons is emitted in vehicle exhaust, and each of these specific 

hydrocarbons has different infrared absorption strengths within the infrared region used in remote 

sensing. So each specific hydrocarbon will incur a certain measurement error, with the exception of 

propane for which the instrument has been calibrated.  

Stephens et al. (1996) conclude that “the wide range of different response factors for different HC 

compounds represents a serious problem for NDIR-based measurements of vehicle exhaust. The NDIR 

approach currently has poor accuracy for quantitative determinations of exhaust HC concentration”. 

RSD determines around 50% of the HC mass compared to flame ionisation detection (FID) techniques 

used in laboratory measurements (Singer et al., 1998). Therefore a ‘scaling factor’ of about a factor 

of two is commonly applied to the RSD data (e.g. Pokharel et al., 2002; Kuhns et al., 2004).  

However, given the sensitivity of NDIR to the mixture of hydrocarbons in the exhaust plume, the use 

of a single factor of 2 obscures this uncertainty. This is, to some extent, acknowledged by Bishop and 

Stedman (1996) who state that “RSD results for individual vehicles cannot be expected to correlate 

perfectly with FID”. They also mention that these errors appear to average out for large fleets. 

Therefore, for the validation study fleet level HC emission results should be used, as well as a 

plausible range of ‘FID correction factors’. Stephens et al. (1996) conclude that an adjustment factor 

could range from 1.5 to 4.4, and this range could be adopted in the validation study. However, this 

range is large and it reflects the results for gas samples that do not resemble the complex HC mixture 

in vehicle exhaust.  
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Singer et al. (1998) developed a multivariate linear regression model to estimate NDIR/FID response 

factors for individual VOCs for remote sensors with a 3.40 µm filter. These researchers then applied 

this model to speciated fleet-averaged VOC emission measurements from various tunnels in the US 

and estimated an average scaling factor for vehicles using conventional petrol and reformulated 

petrol and found fleet averaged scaling factors varying between 1.9 and 2.3. For conventional (US) 

petrol a scaling factor of 2.2 is recommended. The scaling factor is sensitive to the filter used in the 

remote sensing equipment. A 3.45 µm filter reduced the fleet averaged scaling factors by about 15% 

to 1.7 and 2.0.  

There are a few issues with using these factors directly in New Zealand: 

 The measured VOC emission speciation reflects tunnel conditions with typically high speed 

free-flow traffic conditions, which can differ significantly from e.g. urban traffic conditions 

where remote sensing measurements are normally carried out. 

 The VOC speciation reflects US fuels and the US on-road fleet, which will differ from the New 

Zealand fleet.  

 The tunnel measurements were carried out in the 1990s and, therefore, reflect an old fleet 

with a significantly different average VOC profile, as compared with current fleets. 

It is recommended that the availability of New Zealand VOC emission profiles for the on-road fleet is 

examined (tunnel, near-road air quality measurements). If this information is available, a New 

Zealand specific NDIR/FID scaling factor can be computed and used, provided that a 3.4 µm filter is 

used in the RSD used in New Zealand. Alternatively, VEPM can be used to create a fleet-averaged 

VOC profile and estimate a HC scaling factor for New Zealand conditions for use in the validation 

study. A less time-consuming approach can be to assume a feasible range in a sensitivity analysis as 

will be discussed later, or to simply consider that the error is small and negligible with respect to 

overall errors. 

Hydrogen-to-carbon ratio 

The hydrogen-to-carbon or H/C ratio in the exhaust gas varies with vehicle technology and fuel type. 

In laboratory tests, the conversion of ppmC FID readings to THC emission factors require an 

assumption with respect to the H/C ratio in the exhaust gas. Typically, CH1.85 is assumed for both 

petrol and diesel. This H/C ratio reflects the H/C ratio of the fuel (e.g. EC, 1999), which is assumed to 

be equivalent to the H/C ratio in the exhaust gas.  

As will be seen later, remote sensing uses a slightly different assumption of CH2.00 for non-

oxygenated petrol and diesel fuels (e.g. Bishop, 2011). However, this variation in hydrogen content 

does not have a large impact on the molecular weight of HC, and therefore the HC emission factor, 

due to small molar mass of hydrogen as compared with carbon.  

Nevertheless, it is interesting to examine how accurate the CH1.85 assumption is in relation to the 

actual H/C ratio in vehicle exhaust. Ye et al. (1997) report a detailed breakdown of the composition 

of unleaded (Australian) petrol. Using this detailed information a H/C ratio of 1.8 is computed. To 

further examine the H/C ratio in exhaust, laboratory emissions data from 21 light-duty Australian 

vehicles (DEWHA, 2008) operating on both petrol and E10 were examined. This study conducted high 

quality and comprehensive measurements for methane, C2-C12 VOCs, carbonyls (mainly 

formaldehyde, acetaldehyde and acetone), alcohols (mainly ethanol and methanol) and 1,3- 

butadiene. 
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The emissions data were collated to create an average hydrocarbon profile for 91 organic 

compounds. These data were then used in this study to compute the H/C ratio for each vehicle 

category. The results are shown in Table 3-2. 

Table 3-2: Computed H/C ratios in Exhaust for Australian Light-Duty Vehicles.  

Petrol 

ADR37/01 

(~ Euro 1) 

Petrol 

ADR79/00 

(Euro 2) 

Petrol 

ADR79/01 

(Euro 3) 

E10 

ADR37/01 

(~ Euro 1) 

E10 

ADR79/00 

(Euro 2) 

E10 

ADR79/01 

(Euro 3) 

2.03 2.23 2.08 2.05 2.27 2.08 

It can be seen that there is some variation in the H/C ratio depending on the vehicle class and fuel. A 

typical H/C ratio appears to be 2.10, which means a 2% increase in molecular weight as compared 

with CH1.85 and a similar increase in the corresponding VEPM THC emission factors. These changes 

are small and could be ignored from the perspective of expected overall accuracy. However, for 

consistency reasons, it is recommended that an accurate fleet average H/C ratio is determined for 

the New Zealand fleet and used to modify both VEPM and remote sensing results (by fuel type). 

3.3 Different determination of emission factors 

Remote sensing uses different calculations to determine emission factors as compared with standard 

laboratory testing on which VEPM is based, and these differences need to be considered when a 

validation study is conducted.  

3.3.1 Remote sensing 

RSD data are converted into emission factors in grams per litre or kg of fuel burned (EF*, g/kg fuel) 

using a chemical mass (carbon) balance approach. Bishop (2011) presents the derivation of the 

FEAT20 combustion equations for CO, HC and NO. In a more simplified form, the approach uses the 

following (unbalanced) chemical reaction equation: 

2632 2 COHCCOairCH           (2) 

A few comments can be made here: 

 Exhaust gas is assumed to have a similar composition as propane (C3H8), but a multiple of 

petrol of diesel fuel (CH2) has been used to simplify the calculation, introducing a small 

discrepancy.  

 The multiplication factor of 2 for C3H6 reflects the FID calibration factor.  

 The equation represents stoichiometric combustion, and therefore does not properly reflect 

lean burn combustion conditions in diesel engines.  

 Particulate matter may be a significant carbon sink for e.g. diesel vehicles and is not included 

in the FEAT equation, which introduces some error in the carbon mass balance for these 

vehicles.  

                                                           
20 Fuel Efficiency Automobile Test. The system derived its name from the use of the measured CO/CO2 ratio as an indicator for 
stoichiometric combustion and hence optimised fuel efficiency (Lawson et al., 1990). 
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Pollutant-to-CO2 ratios can be used for both petrol and diesel engines. Therefore, combining 

information from Pokharel et al. (2000; 2002) and Bishop (2011), the following generic equation is 

used for conversion of RSD measurements to fuel-based emission factors (EF*, g/kg fuel): 

















22
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pol

*

rr
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MEF

 

(3) 

Here,  

 Mpol represents the molar mass of the pollutant (CO, HC, NO), which for CO, NO and HC is 28, 30 

and 44 g/mol (as propane), respectively.  

 The term within brackets is derived from the carbon balance in equation 1 and it computes the 

molar ratio of the selected pollutant and carbon, using the measured pollutant-to-CO2 ratios (r) 

for CO, HC and CO2. Note that it does not include all ‘carbon sinks’ such as particulate matter, 

introducing a small error, as was mentioned before. The significance of this error is a function of 

PM emission levels (mass basis), which are generally insignificant for petrol and LPG vehicles, but 

are elevated for (old) diesel HDVs. 

 The constants  and  both represent the NDIR/FID ‘scaling factor’. Pokharel et al. (2002) used a 

value of 2.2, whereas Bishop (2011) used a value of 2.0. The difference is that  only has a value 

of 2.0 or 2.2 when EF* is computed for HC, but a value of 1 when computed for CO or NO. As  is 

part of the carbon mass balance it is used for each pollutant. Note that this calibration factor 

depends on the calibration gas used to measure THC concentrations. For instance, Guo et al. 

(2007) used UV-DOAS (calibrated with 1,3-butadiene) and used a calibration factor of 3.6.  

 The constant  represents the amount of carbon (mol C) per kg of fuel. It has a reported value of 

71.4, which reflects an assumed H/C ratio of CH2.00 for petrol and diesel. Bishop (2011) uses a 

slightly different factor of 71.7 mol C /kg fuel (CH1.94), so there is some variation in RSD 

publications. Using a detailed breakdown of the composition of unleaded Australian petrol fuel 

(Ye et al., 1997) a value of 72.4 mol carbon per kg of fuel is computed. Using equation 3 and 

assuming a possible range of fuel H/C ratios from 1.70 to 2.30 (72.9 and 69.9 mol carbon per kg of 

fuel, respectively) shows that fuel-based emission factors decrease by 4% when moving from a 

H/C ratio of 1.70 to 2.30. 

 Both petrol and diesel fuel have similar H/C ratios, so equation 3 can be used for both fuel types. 

However, other fuels like CNG require modified equations. 

 

To obtain vehicle emission factors (EF) in units of grams per km, EF* needs to be multiplied with 

(mean) fuel consumption rate (   , kg/km): 

fEFEF  *

 
(4) 

In conclusion, fuel-based emission factors (g/kg fuel) are estimated by making assumptions regarding 

the carbon content of the fuel and an appropriate ‘NDIR to FID’ scaling factor for HC. Distance-based 

emission factors (g/km) are then estimated by making assumptions about representative fuel 

consumption rates.  

f
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It has been acknowledged that, ideally, instantaneous fuel consumption rates at the time of 

measurement should be combined with the RSD measurements for each individual vehicle to reflect 

the proper spatial and temporal scale (e.g. CRC, 2007). In fact, a new hybrid model is discussed in 

section 5 that does this. In the absence of high resolution and vehicle-specific fuel consumption data, 

vehicle class averaged fuel consumption rates over longer (trip) distances can be used, but they will 

only provide an approximate estimate of fleet averaged emission factors, expressed as g/km. A 

simpler way has been used recently, which is to directly combine pollutant-to-CO2 ratios with CO2 

emission predictions (e.g. Carslaw et al., 2011b; Kraan et al., 2012). 

No correction is made for the effects of humidity on NO emissions. Very few remote sensing studies 

have actually measured humidity (e.g. Burgard et al., 2006), and even less studies have corrected 

remote sensing measurements for humidity (Bishop et al., 2001). 

3.3.2 Laboratory 

The following equation is used to convert laboratory (CVS) test results into vehicle emission factors 

(EF, g/km): 

d

CkV
EF

nopol 




 
(5) 

Here V is the total volume (l/test) of diluted exhaust gas flow in standard conditions (273 K, 101.33 

kPa), pol is the pollutant density in standard conditions (g/l), kno represents the humidity correction 

(for NO only), C is the background-corrected (mean) concentration (ppm) and d is the total distance 

driven over the test cycle (km). The pollutant density for HC is based on CH1.85. 

3.3.3 Conclusions 

Laboratory emission test results are converted into distance-based emission factors (g/km). Remote 

sensing test results can be converted into the same units, but this requires assumptions regarding 

the carbon content of the fuel, an appropriate NDIR to FID scaling factor and representative fuel 

consumption rates. 

Both laboratory and remote sensing computations are corrected for ‘background concentration’, 

although this is done in different ways. The methods effectively use a different definition of the 

hydrocarbon mixture in the exhaust gas, which is illustrated by the different values used for the H/C 

ratio. A humidity correction for NO is included in the conversion of laboratory test results to emission 

factors, but not in the RSD calculations. There is a clear difference in temporal and spatial resolution 

of the measurements (half a second versus a drive cycle test phase).  

For a validation study it is recommended that: 

1. The H/C ratio is harmonised; an accurate fleet average H/C ratio is determined for the New 

Zealand fleet and used to modify both VEPM and remote sensing results (by fuel type). 

2. A range of  values are used in the conversion of RSD measurements to emission factors as 

part of a sensitivity analysis, as will be discussed in section 6. 

3. A  value for NZ conditions is computed reflecting the local fuel composition at the time of 

RSD measurements. 
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4. A plausible range of mean vehicle class-specific fuel consumption rates (kg/km) is used as 

determined with VEPM. 

5. A NOx humidity correction factor is used to correct either the RSD or VEPM data. 

6. The difference in temporal/spatial resolution is accounted for. This will be discussed in 

section 3.5. 

7. A new approach is explored to combine remote sensing results with high resolution 

predictions of fuel consumption or CO2 emissions (g/s). Refer to section 5. 

3.4 Fleet composition: difference in level of detail 

Vehicle design characteristics significantly impact on emissions and fuel consumption. A vehicle 

classification scheme is normally used in emission modelling to take differences in vehicle design 

characteristics into account. Given the large number of vehicle design characteristics, an almost 

infinite number of vehicle classes could be defined. However, the level of detail in vehicle 

classification should be comprehensive (i.e. include all important classes), as well as practical (i.e. 

level of detail that matches available data on fleet or traffic composition). In addition, a vehicle 

classification scheme should be up-to-date. 

In practice, vehicle technology classes are usually defined in models by a taking into account a limited 

number of factors such as “main vehicle type” (e.g. passenger car, light-commercial vehicle, 

motorcycle, articulated trucks, buses, etc.), “fuel type” (e.g. diesel, petrol, LPG) and “emission 

standards” or “year of manufacture”. However, more detailed vehicle classification schemes are 

sometimes used. For instance, the VERSIT+ model also considers vehicle weight, fuel injection 

technology, emission reduction technology and type of transmission and the CMEM model also uses 

power-to-weight ratio, mileage, model year, after-treatment technology and emitter type (normal, 

high-emitter) as classification variables.  

The choice for classification variables generally appears to reflect an established but arbitrary 

decision process, although in some cases it may actually involve statistical analysis to group vehicles 

according to their emission characteristics. In this respect, NIWA (2008a) confirmed that vehicle age, 

fuel type, speed, acceleration and measurement location were the most important predictor 

variables for a large remote sensing database of Australian vehicles. So it is clear that these variables 

need to be included in the validation study. 

Emission models can be “incomplete” because they predict emissions for specific vehicle categories 

only (e.g. passenger cars), or because they are outdated (e.g. based on test data that do not reflect 

the latest developments in vehicle technology). Use of incomplete models introduces errors. It 

effectively restricts emission prediction to a specific part of a traffic stream, and additional models 

would be needed to estimate total traffic emissions. So, from a practical point of view, models with a 

comprehensive vehicle classification scheme are most useful for model users. 

Remote sensing provides both detailed emissions and vehicle information for the majority of vehicles 

it measures. This is in contrast with VEPM where emission factors are available for specific vehicle 

classes only. As a consequence, the remote sensing data needs to be aggregated to develop emission 

factors that correspond to the VEPM vehicle classification, before a comparison can be made. RSD 

data provides vehicle emission factors for specific vehicle classes (e.g. small Euro 2 petrol passenger 

car). This facilitates a detailed comparison with VEPM predictions, and specific determination of 

which vehicle classes differ most. 



 

34 The use of remote sensing to enhance motor vehicle emission modelling in New Zealand 

 

But before this can be done the representativeness of the RSD sites needs to be examined and 

confirmed. In other words the combined set of RSD locations cannot automatically be assumed to be 

representative of the overall (VKT weighted) fleet composition (or even particular segments of it, 

excluding trucks with e.g. vertical exhausts) and the wide range of driving conditions encountered in 

the real-world. One or a few RSD sites will likely not be sufficient in this respect and this may 

introduce potentially significant bias in emission factors, were they directly derived from RSD results.  

As a result, careful examination and a description of the RSD locations is required in the validation 

study to make qualified comments on aspects that impact on fleet composition such as demographic 

factors, which will influence vehicle age and make/model distributions, but also the proportion of 

vehicles with cold or warming up engines and emission control systems. Although it may be difficult 

to confirm that the RSD data are representative of the VKT-weighted average fleet composition, it is 

recommended that the RSD data be used to examine the spatial and temporal variation in both fleet 

composition and measured emission rates. This includes an examination of the occurrence of repeat 

RSD measurements of the same vehicle. 

3.5 Driving conditions: difference in spatial and temporal resolution 

It is not possible to directly compare VEPM emission factors (g/veh.km) that are derived from 

measurements over various drive cycles with remote sensing data collected at fixed roadside 

locations. The reason for this is that remote sensing techniques measure concentrations and 

(approximately) associated driving conditions at a particular point on the road (generally under slight 

acceleration) at a high frequency for about half a second, whereas drive cycles used in laboratory 

testing typically reflect 10 to 30 minutes of continuous driving over a range of driving conditions to 

simulate a journey.  

 

Figure 3-10: On-Road versus Laboratory measurements.  

3.5.1 Remote sensing 

Two alternative approaches to fixed site remote sensing measurement are worth noting here: 

1. Wang et al. (2012) reported on the use of a mobile remote sensing (DOAS) technique to 

measure tropospheric vertical column densities (mole/cm2) of NO2. A vehicle was equipped 

with remote sensing and GPS equipment and driven over a predefined route through 

Shanghai, China. The measurements were then used to estimate NO2 and NOx emission 

fluxes (ton/h), which were compared with emission inventory predictions. This is an 

innovative approach using remote sensing, which overcomes the spatial limitations of the 

technique.   
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2. A number of international studies21 have reported on the development and application of a 

‘moving platform plume-chasing’ approach to determine fuel-based emission factors for 

selected target vehicles. These methods do not use remote sensing, but sample air from a 

sampling duct installed between e.g. two passenger windows. However, similar mobile 

systems may be developed using remote sensing in the future. 

Nevertheless, for the situation in New Zealand, VEPM reflects drive cycle averaged measurements 

and the roadside measurements provide a snapshot. A proper comparison of remote sensing and 

VEPM predictions requires a method to account for the difference in spatial and temporal resolution. 

To make the two data sets more comparable, variables are required that quantify ‘driving conditions’ 

and link the two independent databases.  

Candidate variables are ‘vehicle-specific power’ (VSP) or vehicle speed and acceleration.  

 VSP is commonly used as an explanatory variable in emission predictions, particularly in the 

USA. Similar but more detailed power-based algorithms are used around the world to 

simulate vehicle emissions at a high spatial and temporal resolution, e.g. in the US (Barth et 

al. 2000), Europe (Hausberger et al., 2003) and Australia (Smit, 2014). VSP (kW) is estimated 

from a second-by-second speed profile with the formula:   

  3000302.0132.0))(arctansin(81.91.1  VSP vMgavM   (6) 

Here, M is vehicle mass (tonne),  is the instantaneous speed (m/s), a is the instantaneous 

acceleration or deceleration (m/s2) and g is the terrain gradient (%). These input data are 

collected at RSD sites. It is noted that vehicle mass can be estimated using vehicle 

registration information such as gross vehicle mass (GVM) or tare mass. However, often this 

is not done and VSP is expressed as kW/tonne. 

 Speed-acceleration (v-a) bins can also be used as classification variables for driving 

conditions. In fact, the first generation modal (second-by-second) vehicle emission models 

used v-a to simulate the impact of driving conditions on emission factors (e.g. Kent et al., 

1982; St. Denis and Winer, 1994; Joumard et al., 1995). The combination of speed and 

acceleration may provide a better classification of driving conditions and a better distinction 

in pollutant emission ratios.  

Although VSP has been extensively used in remote sensing studies to quantify driving conditions and 

validate RSD measurements, some studies have suggested that VSP is not a significant factor with 

respect to measured emission levels (e.g. Kuhns et al., 2004; Sjödin and Jerksjö, 2008), which 

contradicts the findings reported in other studies (e.g. Smit and Bluett, 2011). 

To examine how well VSP or v-a classify vehicle emissions, modal (second-by-second) laboratory 

emission data for 8 medium ADR79/00 and ADR79/01 petrol cars (equivalent to Euro 2 and Euro 3) 

were collected (refer to section 3.2.5). An empirical emissions database of about 23,500 seconds of 

data was created with the following variables: speed, acceleration, VSP and the ratios of CO/CO2, 

HC/CO2 and NOx/CO2.  

The VSP values were then classified into the six VSP bins (A-F) used in Smit and Bluett (2011). These 

bins and their boundaries were selected to achieve a logical distinction in driving behaviour. They are 
                                                           
21 For instance, the On-road Plume Chasing and Analysis System (OPCAS) in Hong Kong (Ning et al., 2012) and ‘zero emission (vehicle) 
Mobile Measurement Platform’ (MMP, Park et al., 2011) and similar work (Kittelson, 2006) in the USA. 
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defined as VSP < 0 kW, 0  VSP < 5 kW, 5  VSP < 10 kW, 10  VSP < 20 kW, 20  VSP < 40 kW, VSP  

40 kW. In addition, 11 speed (km/h) and 16 acceleration (m/s2) bins were defined. 

Both VSP class and speed-acceleration bin, were then computed for each second of emissions and 

driving data. Figure 3-11 shows a summary table for the 23,500 seconds of binned data. It shows for 

which v-a bins driving conditions and emissions were measured, i.e. blank cells mean ‘no data’. In 

addition, the ‘dominant’ VSP class is shown for each v-a bin, meaning that the majority of 

measurements within a particular v-a bin are allocated to the designated VSP class. It can be seen 

that the six VSP classes tend to cluster in certain areas of the v-a matrix, as would be expected as VSP 

is computed using instantaneous acceleration and speed – refer to Equation (6). However, this is not 

a perfect fit, as different VSP bins can occur within specific v-a cells.  

 

Figure 3-11: Speed-acceleration matrix and designated dominant VSP classification.  

The average pollutant-to-CO2 ratios were computed for each bin, i.e. 6 values for the VSP method 

and 176 values for the speed-acceleration method. For each speed-acceleration bin, the mean 

percent difference in pollutant-to-CO2 ratios between the speed-acceleration and VSP method was 

then computed using 1 Hz data, i.e.  

  nRRRd
n

xvapixvapixvsppipi  
1

,,,,,,,,,, 100  (7) 

Here di,p represents the computed mean percent difference for v-a bin i and pollutant p, x denotes 

the xth observation for this specific v-a bin i (1, …, n), Ri,p,va,x represents the xth pollutant-to-CO2 ratio 

for v-a bin i and pollutant p and Ri,p,va,x represents the same measurement for the VSP method. The 

detailed results are shown in Appendix B for each pollutant. The computed mean difference between 

the two methods is typically within  50%, but larger differences do occur. The mean absolute 

difference (MAD) over all v-a bins is 29%, 21% and 69% for CO, HC and NOx respectively.  

It is noted that these results represent driving in a wide range of operating conditions, some of which 

may not typically be observed in remote sensing. For instance about 20% of the (laboratory) data 

points represent idling conditions, which is not measured by remote sensing. Large errors for 
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NOx/CO2 ratios were observed in these low speed operating conditions, which explains the large 

MAD value for this pollutant.22  

Figure 3-12 presents the empirical cumulative distributions for both classification methods. The plots 

show the probability that the pollutant-to-CO2 ratio takes a value of less than or equal to ‘x’. The x-

axis presents the allowable domain for the probability function. Since the y-axis represents 

cumulative probability, it must fall between zero and one. It increases from zero to one as we go 

from left to right on the horizontal axis. 

 

Figure 3-12: Cumulative probability distributions for v-a and VSP 6 bin classification.  

These results show the strength of the VSP approach. The VSP approach uses only 6 bins, whereas 

the v-a classification uses 176 bins. So despite the small number of bins, VSP is able to account for a 

large portion of the variation in the emissions data.  

Frey et al. (2003) determined the best explanatory variable for an on-board and laboratory emission 

database using a technique called Hierarchical Tree-Based Regression. A range of variables were 

included in this analysis such as VSP, speed, acceleration, engine capacity and model year. It was 

found that VSP was consistently identified as the most important variable for each pollutant and 14 

VSP bins were selected as the best “driving mode” definition. The number of bins used by Frey et al. 

(2003) is higher compared with the 6 bins used by Smit and Bluett (2011), which suggests that a 

larger number of VSP bins could be considered for the validation study. To test this, the analysis was 

repeated but now with the fourteen bin VSP classification method. Figure 3-13 visualizes the results.  

                                                           
22 In reality, driving behaviour does not have a uniform distribution over the v-a bins and would be concentrated in specific regions of the v-
a matrix. So weighted mean differences and MAD values can be computed, but this is beyond the scope of this project. 
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Figure 3-13: Cumulative probability distributions for v-a and VSP 14 bin classification.  

To determine the statistical significance of the differences between the methods it is necessary to 

consider both the variability between the groups (i.e. “driving behaviour classification methods”), 

which have been analysed so far, as well as the variability in the emissions data. The F-test can be 

used to test the null hypothesis that the three classification methods (VSP6, VSP14, v-a) are not 

significantly different from each other23. Therefore the mean squared errors (MSEs) were computed 

for each pollutant and classification method, and the F-statistics were computed as the ratio of the 

MSE values for the two VSP methods 1 to the MSE value for the most detailed v-a method. The 

results are shown in Table 3-3. 

Table 3-3: MSE and F-Test p-values for Three Classification Methods.  

 
MSE p-value F test 

Variable 
 

VSP  
6 Bin 

VSP  
14 Bin 

v-a 
 

VSP6/v-a 
 

VSP14/v-a 
 

CO/CO2 ratio (mg/g) 73.98 74.02 72.29 0.41 0.44 

HC/CO2 ratio (mg/g) 0.042 0.042 0.041 0.41 0.43 

NOx/CO2 ratio (mg/g) 1.13 1.12 1.09 0.40 0.42 

 

It is clear that when the variability in the emissions data is considered, the three methods are not 

significantly different (p > 0.05). This is evident from the similar MSE values for all pollutants 

considered. This means that the simplest method (VSP6) could be used. The most detailed v-a 

approach does not provide significant benefits with respect to classification of driving behaviour 

when the variability in vehicle emissions is considered. There are two other issues with the speed-

acceleration approach: 

1. It does not explicitly include vehicle weight and road gradient in the classification, whereas 

VSP does. Both vehicle weight and road grade are known to significantly affect vehicle 

emission levels. So a speed-acceleration approach requires that measurement sites with 

                                                           
23 The F-statistic is the ratio of the between-group variability (e.g. according to the v-a classification) to the within-group variability 
(reflecting the emissions data). The F statistic will be large if the between-group variability is large relative to the within-group variability. In 
other words it represents a good fit to the data. 
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similar road grade and vehicle weight distributions are grouped before the emissions analysis 

is carried out. A benefit of the VSP approach is that the data from multiple sites can be 

pooled together for analysis. 

2. There is a trade-off between the number of bins and the complexity and usefulness of the 

emissions analysis. The number of measurements can become too small for particular bins, 

affecting the accuracy of the mean emission factors for these bins.  

A 6 bin or 14 bin VSP classification method is therefore recommended for the validation study. As will 

be discussed later, there are different ways to take driving conditions into account in the validation 

study. This includes analysis of VSP distributions in drive cycles and comparison with remote sensing 

VSP data.  

Although VSP is the best approach to quantify driving conditions at RSD locations, there are still a 

number of unresolved issues, which are discussed further below. These limitations cannot be 

addressed, but they add uncertainty to the quantification of driving conditions at the time of 

measurement. 

Exclusion of relevant aspects 

VSP does not include all relevant aspects of driving conditions/driving behaviour: 

 It does not account for additional loads due to e.g. road curvature. 

 It does not account for the impacts of gear shift behaviour.24 

 It does not account for ‘driving history’ such as changes in engine power seconds before the 

measurement took place.  

Time alignment errors 

Speed and acceleration are measured at a specific distance before the remote sensing 

measurements take place. Assuming a vehicle speed of 60 km/h and a typical distance between the 

speed and remote sensing measurement of 1 to 5 meters, the time gap between emission and speed 

measurements is about 0.1-0.3 seconds.  

However, engine-out emissions take up to a few seconds to travel from the engine to the exhaust 

pipe. For instance, transport time for a diesel and petrol car varies between 1.3 or 6.6 seconds for 

low engine load (idling) conditions for a diesel and petrol car, respectively, to 0.1 seconds for high 

engine load conditions for both cars (Weilenmann, Soltic and Atjay, 2003). As a consequence exhaust 

transport time is typically larger than the estimated time gap between emission and speed 

measurements. This means that RSD measures (engine-out) emissions for driving behaviour that 

range from a few meters after the speed measurement up to say 50 m before the speed 

measurement (assuming a 3 second delay). These results will be different for other vehicle speeds 

and vehicle specifications (including engine size and exhaust system volume), but it is clear that there 

will be time alignment errors between VSP and remote sensing measurements. These errors will be 

less relevant for sites with homogeneous driving conditions (e.g. constant acceleration). 

 

                                                           
24 Gear shift behaviour affects instantaneous vehicle emissions. This is particular the case for (heavily loaded) HDVs, which undergo many 
gear shift changes with rapid engine transitions from effectively ‘no load’ to ‘maximum load’. 
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Errors in measured acceleration 

The time intervals for computation of speed and acceleration are quite short. For the New Zealand 

remote sensing data a one meter long speed bar is used where the lasers are placed about 0.5 m 

apart (Figure 3-14). 

4). It is noted that this is a different system than what has been reported in other studies (e.g. 

Jiménez et al., 1999; Ekström et al., 2004; CRC, 2007; Carslaw et al., 2013). For instance, Sjödin et al. 

(1997) used two pairs of pneumatic tubes with a 10 m distance between the pairs and a 5 m distance 

between the tubes. 

Assuming a vehicle speed of 60 km/h, the time interval between the speed measurements is about 

0.3 seconds (car) to 0.7 seconds (bus). This is significantly shorter than time intervals used to 

compute instantaneous acceleration from dynamometer data to get robust and realistic values, e.g. 

1-3 seconds (e.g. Smit, 2014). So it is possible that these short time intervals produce noisy and 

unrealistic acceleration values.  

 

Figure 3-14: Speed bar (red circle) used for NZ remote sensing measurements.  

This seems to be the case for several RSD studies. For instance, CRC (2003) reports that accelerations 

within the range of -13 to +14 mph/s (-5.8 to +6.3 m/s2) measured with the FEAT RSD are considered 

to be valid accelerations. Chen and Borken-Kleefeld (2014) also show very high acceleration levels, as 

is shown in Figure 3-15. Elder et al. (2011, Fig. 2) also reported high acceleration rates measured with 

RSD in New Zealand of up to almost 5 m/s2. 
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Figure 3-15: Speed-acceleration data measured with RSD and comparison with CADC drive cycles.   (Chen 
and Borken Kleefeld, 2014). 

Typical maximum real-world accelerations for LDVs are expected to be about 3 m/s2 at low speeds, 

with increasingly lower maximum values at higher speeds. This is in line with some remote sensing 

studies. For instance, Guo et al. (2007) report measured accelerations ranging between -2.2 and +2.1 

m/s2. Interestingly, these workers note in their paper that they used three lasers for 

speed/acceleration measurements, rather than the conventional two, for greater accuracy. It is 

unclear what is causing these high acceleration values as the accuracy of acceleration measurements 

has been reported to be better than 0.25 m/s2 (e.g. Sjödin et al.,1997). It is recommended that the 

speed-acceleration distributions for New Zealand are further examined. 

3.5.2 Laboratory 

VEPM is based on emission testing studies using chassis or engine dynamometers. Although these 

tests generally use high quality equipment and are conducted under highly controlled conditions, 

there are still several challenges to produce emission results that are representative for real-world 

driving conditions. 

It is clear that ‘real-world’ drive cycles must be used for emission factor development, rather than 

standard drive cycles such as the Eurotest and US FTP cycles (used in the Australian Design Rules or 

ADRs), which substantially underestimate emissions due to relatively low speed and acceleration 

levels. VEPM reflects emission measurements over real-world drive cycles. It is, however, not 

possible to determine if these cycles adequately and accurately represent New Zealand driving 

behaviour, given the large variety of European drive cycles that have been used in the development 

of COPERT for different vehicle classes (e.g. Smit, Brown and Chan, 2008).  

But even if ‘real-world’ cycles are used in laboratory testing, there are remaining issues. As drive 

cycles are of limited duration to keep costs within acceptable limits, specific driving conditions may 

be excluded.25 Real-world factors can also be excluded, such as road gradient effects, air conditioning 

                                                           
25 An example is the Australian real-world CUEDC-P, which has instantaneous speeds up to 94 km/h, whereas freeway driving occurs at 
higher speeds. 
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use and ‘real world’ variation in driving styles (including gear shift behaviour). The quality of the 

dynamometer and dynamometer settings also impact on the emission results. Dynamometer system 

configuration26 and specifications27 vary and affect how well on-road driving conditions are replicated 

in the laboratory. In addition, the extent to which vehicle specific parameters are taken into account 

is important.28  

Given that VEPM is based on overseas models, which in turn are based on a variety of overseas 
vehicle test programs and drive cycles, this information cannot readily be retrieved and verified. 

3.6 Meteorological conditions: difference in test conditions 

Meteorological variables such as ambient temperature, air density and humidity have a direct impact 

on combustion processes and thus vehicle emissions. In addition, these variables affect air-

conditioning use, which affects emissions because the air-conditioning compressor requires a 

significant amount of energy.  

 Ambient temperature will fluctuate substantially in time. Vehicle emissions are a function of 

ambient temperature, particularly CO and THC emissions, and especially during cold starts. In 

general, exhaust emissions increase gradually with decreasing temperature from about 25 

°C. Below about 10 °C the emissions increase dramatically in a non-linear fashion. Laboratory 

tests are typically conducted at temperatures between 20-30 ºC. RSD measurements reflect 

actual ambient temperatures. As a consequence, temperature correction needs to be applied 

to either VEPM predictions or remote sensing data. It is noted that VEPM uses temperature 

correction factors as an optional input (-10 to 30oC). 

 Laboratory measurements are normally corrected for humidity to standard test conditions 

(i.e. 10.71 g H2O/kg dry air, corresponding to 61% RH at 23 ºC and 101.3 kPa pressure). NOx 

emissions are a function of humidity where an increase in ambient humidity lowers NOx 

emissions, and vice versa. The differences can be quite substantial (e.g. 70-160%), so this 

could cause a significant difference with RSD measurements. For the validation study, the 

RSD results need to be normalised for humidity. 

 Air density affects engine operation and emissions in older vehicles, but not significantly in 

modern vehicles where electronic fuel injection systems automatically compensate for 

changes in air density. The issue of air density is an issue for RSD measurements at high 

altitudes, so this variable is not expected to be relevant for the validation study and can be 

excluded. 

 The use of air-conditioning has the potential to substantially increase vehicle emissions as it 

increases the load placed on the engine. Increases in emissions of light-duty vehicles by more 

than one order of magnitude have been reported in the past, but lower values have also 

been reported. Air-conditioning is normally not incorporated in laboratory vehicle emission 

testing. VEPM has no air-conditioning correction factors, but air-conditioning impacts will be 

reflected in the RSD results. So a correction of either the VEPM or RSD results is 

recommended. However, the feasibility of this is unclear. Simulation of the effects of air-

conditioning on traffic emissions requires not only consideration of emission effects, but also 

                                                           
26 e.g. hydraulic or electrical power absorption unit. 
27 e.g. base inertia, response time, power absorption capability, motoring capabilities, permissible axle loading. 
28 For instance, dynamometer settings can be based on coast-down test results, general settings as specified by legislation or based on 
empirical formulae. 
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air conditioning use (which is a function of local climate and time of year) and penetration of 

air conditioners in the on-road fleet.  

Assuming that meteorological information is available for the RSD measurements, their impacts on 

either VEPM predictions or the RSD measurements need to be quantified and included in the 

validation study. 

3.7 Fuel quality: difference in test conditions 

The composition and quality of fuel has a significant impact on emissions. Commercial fuels change 

over time. Examples are the phasing out of lead from petrol and the ongoing reduction of sulphur 

content in fuels. VEPM is to a large extent based on overseas models, and therefore reflects the 

quality and composition of the fuel used in overseas testing programmes, at the time of 

measurement. The RSD data will reflect the local NZ fuel quality and composition, and will therefore 

be more accurate in this respect. VEPM emission predictions need to be corrected for commercial NZ 

fuels, to the extent that this is possible, if this has not already been done in the development of 

VEPM. 

3.8 Ageing effects: difference in test conditions 

Mileage has a significant and unavoidable effect on vehicle emissions. Even with reasonable 

maintenance, vehicle emissions increase with mileage and age due to deterioration of engine and 

emission-control components. Emission deterioration is intrinsically related to the durability of 

emission control devices (including OBD), in-service I/M programs, driving conditions and driving 

behaviour.  

The remote sensing data reflect snapshots in time. Fleet-wide ageing effects can be captured by 

relating RSD emissions to vehicle model year and by conducting remote sensing campaigns in 

subsequent years and, ideally, multiple sites (e.g. Sjödin and Andréasson, 2000; Lau et al., 2012; 

NZTA, 2014).  

In contrast, the laboratory based VEPM predictions are ‘fixed’ and reflect the ageing effects at the 

time of measurements only. Ageing effects are normally simulated in emission models by generic 

mileage correction algorithms, which are based on limited data. In fact, the accuracy of those 

algorithms in VEPM requires some attention. For instance, Borken-Kleefeld and Chen (2015) 

compared deterioration rates for petrol cars, derived from 13 years’ of remote sensing data at a 

single site in Switzerland, with those used in COPERT and HBEFA. They found substantial differences 

in deterioration rates and, importantly, estimated a relative impact on emission predictions of up to 

a factor of 3 for specific vehicle classes. It is therefore recommended that deterioration rates derived 

from New Zealand remote sensing data are also compared with those used in VEPM. This should 

include an analysis of consistency between the results for multiple RSD sites (e.g. NZTA, 2014). 

3.9 Vehicle loading: difference in test conditions 

Vehicle load can have a significant impact on vehicle emissions. For instance, towing a caravan or 

trailer can greatly increase engine load and therefore emissions. Like engine operating conditions 

(e.g. ‘cold start’), actual vehicle loading is not measured with the RSD, although a few studies 

reported the use of a weighing station before remote sensing measurements were carried out 

(Bishop et al., 2001; Burgard et al., 2006).  
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There appears to be no practical way to include ‘vehicle loading’ into the validation study due to a 

lack of information in this respect. For instance, there are no data on vehicle load distributions in on-

road fleets. This information is useful input for the development of more accurate emission 

inventories. The lack of vehicle weight information appears to be less of an issue for the actual 

remote sensing measurements. This is because the pollutant-to-CO2 ratios are less sensitive to 

vehicle loading (e.g. Mazzoleni et al., 2004b). For instance, Burgard et al. (2006) did not find a clear 

trend of CO and NOx fuel-based emission factors with truck weight. 

Vehicle loading is recorded during laboratory testing, but the extent to which dynamometer loading 

corresponds to real-world driving is another factor to consider here, as was discussed in section 

3.5.2. This comes (in part) down to the quality of the dynamometer and dynamometer settings. 

Given that VEPM is based on overseas models, which in turn are based on a variety of overseas 

vehicle test programs, this information cannot readily be retrieved and verified. 
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4 Intended use of VEPM 
Another source of error is application of models beyond their intended use or design capabilities. 

This has relevance for the validation study because, as we have seen, RSD measurements are highly 

localised, whereas, as will be discussed in this section, VEPM’s intended use is for emission 

estimation at road network level.  

This difference cannot be resolved, but it can (to some extent) be accounted for in the validation 

study through the use of more robust and stable comparison statistics (fuel-based emission factors) 

and explicit consideration of drive cycles and driving behaviour at RSD sites. 

Vehicle emission models can be applied at different scales, depending on the modelling objectives. 

Three main modelling objectives may be distinguished:  

1. verify compliance with air quality standards; 

5. development of emission inventories; and 

6. evaluation of transport policies (scenario testing).  

Assessment may be conducted at the local, regional, national or even global scale. For instance, it 

may involve local air quality impacts due to new road projects or the implementation of (new) traffic 

management measures (e.g. lower speed limits, traffic signal coordination, metering signals). 

Assessment of regional air quality are commonly based on emission inventories and may involve 

modelling of key pollutants such as NOx and PM10, but is often directed towards the analysis and 

prediction of photochemical smog levels. National emission inventories are needed to verify 

compliance with international agreements (e.g. national emission ceilings, greenhouse gas 

emissions).  

Models are often used beyond their intended purposes and capabilities, resulting in errors. This may 

partly be explained by lack of understanding of the model development process, the underlying 

empirical data and the exact definition of variables used by the model, and clear documentation of 

these matters. 

For instance, “speed” can be defined in several ways (e.g. space mean speed, time mean speed, 

running speed, travel speed, instantaneous speed), but the correct speed definition for average 

speed emission models like VEPM would correspond to “travel speed”, which is defined as: the 

overall speed between two points of “sufficient” distance, i.e. distance corresponding to drive cycles 

used in emission model development, including all delays, for either an individual vehicle or a traffic 

stream. So the length of the drive cycles used for emissions testing and subsequent model 

development is an important aspect for consideration. Figure 4-1 shows that drive cycles on which 

well-known average speed models were based, have a cycle length that varies between 130 m to 98 

km, and a median value of 6 km. Shorter drive cycles typically occur at lower more congested mean 

speeds, whereas longer cycles tend to occur at higher mean speeds.  
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Figure 4-1: Drive cycle Distance versus Average Speed.   (Source: Smit et al., 2009). 

This has implications for the appropriate spatial resolution at which average speed models such as 

VEPM should be applied. For instance, a drive cycle with an average speed of 70 km/h that 

represents a journey through a road network may involve driving on residential, arterial and 

freeways and would be expected to have significantly different driving characteristics and emissions 

as compared with a driving pattern with the same average speed for a 100 m stretch of arterial road 

with free-flowing driving conditions.  

As a consequence, the correct spatial application of average speed models such as COPERT (and 

therefore VEPM) is likely to be at large or small network level. Indeed, this was the reason to 

explicitly develop emission factors for COPERT Australia for 100 m driving segments (Smit and 

Ntziachristos, 2012). The COPERT (Europe) model documentation suggests, for example: 

COPERT III: 

“COPERT III has mainly been developed for the compilation of national annual emission inventories.”  

“The proposed methodology can be used with a sufficient degree of certainty at a higher resolution too, 

i.e. for the compilation of urban emission inventories with a spatial resolution of 1x1 km2 and a temporal 

resolution of 1 hour.” 

“The application of the methodology can be applied at maximum spatial resolution on a street network 

(e.g. highways) or on a whole urban area (e.g. small city).” 
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COPERT IV: 

“The proposed formulas should only be used with average travelling speed and by no means can be 

considered an accurate approach when only instant speed values are available.” 

“Emission factors can be considered representative of emission performance with constant speed only at 

high velocities (>100 km/h) when, in general, speed fluctuation is relatively low.” 

“The emission factors should not be applied in cases in which the driving pattern differs too much from 

what is common, e.g. in traffic calming areas.” 

“The emission factors proposed are aggregated emission factors, averaged over a large number of drive 

cycles, therefore not necessarily representative of the instantaneous emissions of vehicles driven under 

actual conditions.” 

The use of ‘average speed’ as the only variable to capture the impact of driving conditions on 

emission levels can introduce significant errors in the emission predictions with the same mean 

speed, but with different levels of speed fluctuation (i.e. different drive cycles or driving patterns). 

Errors in emission predictions of up to a factor of four have been reported for speed-time traces with 

the same mean speed but with different levels of speed fluctuation.  

This is illustrated in Figure 4-2. It shows the predictions of NOx emission factors by both COPERT IV 

(solid line) and a more complex model (VERSIT+, grey dots) for a variety of driving conditions (drive 

cycles). The more complex model uses multiple variables to predict emissions (e.g. average speed, 

number of stops, level of speed fluctuation, etc.) 

 

Figure 4-2: NOx Emission Factors as Predicted by COPERT IV and a more Complex Model.   (Source: Smit, 
2008b) 
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It can be seen that for traffic situations with different dynamics but similar average speeds the more 

complex model predicts different emission factors, whereas COPERT IV predicts the same emission 

factors for all these situations. Suppose now that the implementation of a particular local traffic 

management measure (e.g. improved signal timing) has smoothed the flow of traffic (i.e. reduced 

dynamics) and has increased the average speed from 20 to about 55 km/h. For this particular 

situation, COPERT IV would always predict a decrease in emissions. In contrast, the more complex 

model could predict either a decrease or an increase in emissions, or even no effect, depending on 

input driving pattern data in both the reference and the new traffic situation. This effect is shown by 

the dashed arrows in Figure 4-2.  

Clearly, for policy makers and transport planners the correct direction and magnitude of these 

effects is necessary information for imposing effective and cost-effective measures in order to 

improve on local air quality and reduce greenhouse gas emissions. More detailed models in addition 

to VEPM will be needed in the future for adequate emission predictions at the local level. Section 5 

will discuss a possible approach to develop such as model, using remote sensing data. 
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5 A new hybrid emission model based on RSD 
Remote sensing has been extensively used around the world, including the US (Jiménez et al., 2000; 

Bishop and Stedman, 2008), Europe (Carslaw et al., 2013; Chen and Borken-Kleefeld, 2014), Asia 

(Chan and Ning, 2005; Lau et al., 2012; Yam, 2012), Australia (NIWA, 2008b; Smit and Bluett, 2011) 

and New Zealand (Bluett and Fisher, 2004; 2005) for different purposes, but rarely for actual 

emission factor development. There are a few exceptions: 

 Chan and Ning (2005) fitted linear polynomial regression equations to remote sensing data using 

the pollutant-to-CO2 ratios as the response variables and instantaneous speed and acceleration as 

the predictor variables. These ratio predictions were then used in combination with diesel fuel 

density, carbon content of diesel fuel, molar mass of the fuel to convert the ratio to fuel-based 

emission factors (g/l) for Hong Kong. A mathematical relationship between instantaneous fuel use 

and speed (l/km) was sourced from another study and combined with the remote sensing fuel 

based emission factors for CO, HC and NO to compute composite emission factors (g/km) for 

diesel vehicles.  

 Lau et al. (2012) combined RSD ‘emission indices’ (g pollutant per litre of fuel) directly with fuel 

consumption regression equations (litre of fuel per km) using speed and acceleration that were 

developed from dynamometer (one petrol car) and on-board emission measurements (diesel and 

LPG vehicles) in Hong Kong. Although the paper is not clear on this, it appears that the regression 

equations provide second-by-second estimates of fuel consumption. 

These studies used their models to compare emissions at specific instantaneous speeds, but did not 

use them in combination with drive cycles to develop emission factors for specific traffic situations. 

Some other researchers have done this. Smit and Bluett (2011) developed statistical models to 

compute an ‘on-road emission distribution’ correction factor for laboratory based emission factors 

using remote sensing emissions data. A real-world Australian drive cycle was then used to quantify 

representative driving conditions (percentage of time spent in each VSP bin). Rhys-Tyler and Bell 

(2012) used remote sensing data, expressed as grams pollutant per kg fuel, in combination with the 

VSP frequency distribution (less than -10 to larger than + 20 kW) of the NEDC drive cycle to calculate 

a weighted emission factor. 

Previous investigations have shown that vehicle emission models need to reflect local fleet 

composition and driving characteristics to provide adequate vehicle emission predictions. Large 

errors have been reported when overseas models are directly applied to local conditions without 

calibration (e.g. Smit and McBroom, 2009), because these models do not reflect local fuels, climate, 

fleet composition and driving conditions. Indeed, this was the main reason for the development of a 

dedicated Australian version of the COPERT software, known as ‘COPERT Australia’, using extensive 

emission measurements of Australian vehicles (Smit and Ntziachristos, 2012). 

  



 

50 The use of remote sensing to enhance motor vehicle emission modelling in New Zealand 

 

The remote sensing database is the only substantial emissions database available in New Zealand. It 

thus makes sense to develop an emission prediction model that incorporates these data. This 

however is not a trivial task given the significant number of differences between laboratory 

measurements, the common base for emission models, and remote sensing measurements, as was 

discussed in previous sections in this report.  

This section discusses a new approach that combines power based emissions modelling with remote 

sensing measurements to develop a hybrid micro-scale emissions model. The model allows for 

detailed second-by-second emission simulation and time-efficient assessment of the impact of 

various traffic conditions on emissions. The hybrid model presents an alternative way of predicting 

vehicle emissions in New Zealand and the results can be used in a comparison study with VEPM. 

5.1 Hybrid model structure 

This section presents a proof-of-concept of the hybrid emission model. This illustrates how the rich 

New Zealand remote sensing database can be used to develop a genuine New Zealand emissions 

model, which can be used to ‘validate’ VEPM, but also allows for emission predictions at a 

significantly higher resolution in space and time than VEPM. 

The key ingredients for the hybrid model are: 

 Remote sensing data 

 CO2 emission algorithms 

 Relationship between air pollutants and CO2 

 Input drive cycles 

As Australian data were readily available for all these four aspects, these were used for the proof-of-

concept. However, New Zealand remote sensing and drive cycle data can be used instead of and 

replace the Australian data to develop a New Zealand hybrid remote sensing model, as will be 

discussed later. 

Remote sensing data 

An extract of a large remote sensing database was used to develop quantitative relationships 

between air pollutant and CO2 emissions (Smit and Bluett, 2008). The extract contains approximately 

1,000 remote sensing measurements that were made in Perth, Australia, at five monitoring sites on 

relatively high capacity urban arterial roadways. The extract contains information on date and time 

of measurement, instantaneous vehicle speed, instantaneous vehicle acceleration, VSP, 

concentration ratios of CO, HC and NO to CO2, license plate number, vehicle make and model, year of 

manufacture, number of cylinders and tare mass. Actual on-road vehicle mass was estimated for 

each vehicle by adding 200 kg to reported tare mass. VSP can therefore be expressed as kW 

(equation 6), and not the conventional kW/tonne. VSP expressed as kW is required as input to the 

CO2 emission algorithms. The data reflects measurements for two vehicle classes (model years 1998-

2003): 

1. Small petrol passenger cars with an engine capacity of less than 2 litres. Typical vehicles are 

BMW 318, Ford Focus, Holden Barina, Holden Astra, Honda Civic, Hyundai Getz, Hyundai 

Excel, Mazda 323, Mitsubishi Lancer, Renault Clio, Toyota Echo and Toyota Corolla. 
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2. Large petrol SUVs with an engine capacity typically larger than 3 litres. Typical vehicles are 

Jeep Cherokee, Landrover Discovery, Mitsubishi Pajero, Nissan Patrol, Toyota Kluger, Toyota 

Landcruiser and Toyota Prado. 

CO2 prediction algorithms are developed for those vehicle classes. 

Modelling of CO2 emissions 

A hierarchy of vehicle emission models can be distinguished based on the level of complexity and 

types of application. These include ‘average-speed’ models (e.g. VEPM, COPERT), where emission 

rates (g/veh.km) are a function of mean traveling speed, ‘traffic-situation’ models (e.g. HBEFA, see 

e.g. INFRAS, 2004), where emission factors (g/veh.km) correspond to particular traffic situations (e.g. 

‘stop-and-go-driving’, ‘freeflow’) and ‘modal’ models (e.g. PHEM, see e.g. Hausberger et al., 2009; 

CMEM,  see e.g. Barth et al., 2000; PP, see e.g. Smit, 2014), where emission factors (g/s or g/ driving 

mode) correspond to specific engine or vehicle operating conditions.  

As remote sensing measurements are effectively snapshots in time, the appropriate time scale for a 

model using these measurements is 1 Hz or less. This means that modal (second-by-second) vehicle 

emission models reflect the most appropriate scale for the hybrid model.  

Pollutant-to-CO2 ratios are the most appropriate way of presenting and analysing remote sensing 

data, but these ratios do not show significant differences in fuel consumption (and hence CO2 

emissions) between different vehicles. It is therefore logical to stratify the on-road fleet in relatively 

homogeneous segments with respect to the main vehicle parameters that affect fuel consumption 

and CO2 emissions.  

Mellios et al. (2011) reported that the best performing CO2 emission models for light-duty vehicles 

include the variables vehicle mass, rated engine power or engine capacity, fuel type and a variable 

representing engine power. The hybrid model should include these variables through an appropriate 

vehicle classification scheme and use a proxy variable for engine power such as VSP. 

The CO2 emission algorithms in the hybrid model follow a similar approach as the PP model (Smit, 

2013b; 2014), although a few modelling aspects are necessarily simplified to allow for a proper 

combination with remote sensing data. The model uses a similar vehicle classification as COPERT 

Australia, which is based on the combination of fuel type, main vehicle type and vehicle emission 

standard. CO2 emission algorithms are developed for the two vehicle classes discussed before, i.e. a 

small petrol passenger car and a large petrol SUV. 

Empirical CO2 emissions data were sourced from the Second National In-Service Emissions (NISE2) 

study (RTA, 2009) to develop CO2 emission algorithms for the hybrid model. NISE2 provide vehicle 

emissions test data in both cold start and hot running conditions for 409 Australian light-duty petrol 

vehicles. Tests were conducted on a second-by-second (‘modal’) and aggregate (‘bag’) basis.  

The exhaust emission database contains tests which were collected in a vehicle emissions testing 

laboratory over a 30-minute real-world drive cycle (speed-time trace) called the ‘CUEDC-P’ 

(Composite Urban Emission Drive Cycle for Petrol vehicles). This cycle was developed from Australian 

driving pattern data collected in the field. It consists of four phases, or sub-cycles, representing 

‘Residential’, ‘Arterial’, ‘Freeway’ and ‘Congested’ driving conditions. Figure 3-8 shows the CUEDC-P 

drive cycle.   
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For each vehicle class a representative vehicle was selected for which verified and time-aligned 
modal CO2 emissions tests are available. The vehicles are ‘representative’ as their average fuel 
consumption is similar to the average value for all vehicles in that vehicle class (± 5%). Table 5-1 
shows vehicle information for the selected vehicles. 

Table 5-1: Vehicle information for selected representative vehicles.  

Vehicle Class Make/Model GVM 

(kg) 

Rated Power  

(kW) 

Engine 
Capacity (l) 

Number of 
Cylinders 

(-) 

PC-S petrol Toyota Corolla 2000 1507 85 1.8 4 

SUV-L petrol Mitsubishi Pajero 2000 2799 140 3.5 6 

Acceleration (at, m/s2) is computed as: 
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where t represents instantaneous vehicle speed (m/s) at time t, which varies from the cycle start 

time t = 1 to the cycle end time t = n. VSP (kW) is then computed for each time step using vehicle test 

mass, vehicle speed and vehicle acceleration as follows: 

  3000302.0132.0))(arctansin(81.9 1.1 ttttt vMgaMVSP       (9) 

Here, M is vehicle test mass (tonne) and gt is the road gradient (%) at time t. Note that road gradient 

is zero for the laboratory tests. Figure 5-1 shows an example of a speed-acceleration scatter plot and 

two histograms for acceleration and VSP for the small petrol passenger car. It is clear that all VSP 

predictions are substantially below rated engine power for this vehicle. 

 

 

Figure 5-1: Speed, acceleration and VSP distributions in modal data for the small petrol passenger car 
(blue dotted vertical line shows rated engine power).  
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The empirical data were split into two datasets (called ‘verification’ and ‘validation’) to enable both 

types of assessment.29 The empirical ‘verification’ dataset was fitted to the following equation to 

simulate the measured CO2 emission rate (et,CO2, g/s): 
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For idling conditions (t = 0 km/h) a constant average value (g/s) is used. This value is determined for 

each vehicle by taking the average value of all instantaneous emission rates in idling conditions. For 

non-stationary driving conditions (moving vehicle) a polynomial regression function was fitted using 

the ordinary least-squares method, where 0, 1, 2 represent the regression coefficients. Residual 

analysis was used to verify that the assumptions of the regression analysis were not violated. An 

example of graphical evaluation of model performance is shown for the small petrol passenger car in 

Figure 5-2. The plots show examination of goodness-of-fit, a normal probability plot and a residual 

analysis plot to verify normality and homoscedasticity of error terms (Neter et al., 1996). The results 

for the other vehicle are similar.

 

Figure 5-2: CO2 model fitting and residual analysis for the small petrol passenger car.  

The simple polynomial regression function provides a reasonable fit with coefficients of 

determination (R2) varying from 0.79-0.80 and normalised RMSE30 values varying from 5-6% 

(verification), and a slightly higher value of 8% for the validation data set, as is shown in Table 5-2. 

The empirical data were also fitted to higher order polynomial functions, but this did not lead to 

significantly improved emission functions, so the most parsimonious second-order polynomial model 

is retained.31 

                                                           
29 Model verification assesses how well a model predicts the data on which it is based, whereas model validation assesses how well a 
model predicts with respect to independent data. 
30 Root-Mean-Square-Error (RMSE) is a frequently used measure of the differences between predictions and observations. It aggregates the 
second-by-second errors into a single measure of predictive power. Normalized RMSE is used to make RMSE scale-independent and it is 
computed by dividing RMSE by the range of observed values. 
31 A parsimonious model is a model that accomplishes a desired level of prediction accuracy with as few predictor variables as possible. 
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Table 5-2: CO2 model parameters and performance statistics.  

Vehicle Class a b0 b1 b2  NRMSE 

verification 

R2 

verification 

NRMSE 

validation 

R2 

validation 

PC-S petrol 0.75 1.24 0.121 0.0030 0.98 6% 0.80 8% 0.80 

SUV-L petrol 1.08 2.10 0.122 0.0021 1.01 5% 0.79 8% 0.81 

It is noted, however, that more accurate models can be developed from the laboratory emissions 

data. For instance, the PP model (Smit, 2013b) performs significantly better, with R2 values varying 

from 0.93-0.94 and normalised RMSE values varying from 2-4% using the same empirical data.  

The main differences between the simple VSP model and the PP model is the use of more complex 

algorithms in the PP model to quantify instantaneous engine power32, as well as inclusion of an 

additional variable that quantifies the change in engine power over the last 3 seconds of driving 

(Smit, 2014). The PP model also uses time-series models to account for the fact that CO2 

measurements are dependent in time (autocorrelation effects).  

However, the hybrid model needs to balance the vehicle driving information that is available from 

the remote sensing data with the level of detail and associated accuracy that is possible in CO2 

algorithms. The second-order polynomial VSP function aims to strike the right balance in this respect.  

It is instructive to show time-series plots of predicted and observed CO2 emissions and the speed-

time profile used during emissions testing. Figure 5-3 and Figure 5-4 show the results for the small 

petrol car and the large petrol SUV. The black line represents the observations and the red dots 

represent the predictions. 

 

Figure 5-3: Predicted (red dots) and observed (black line) CO2 emission rates for the small petrol passenger 
car and speed-time plot (model verification).  

 

                                                           
32 For instance, explicit consideration of rolling resistance coefficients, frontal area and aerodynamic drag coefficient. 
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Figure 5-4: Predicted (red dots) and observed (black line) CO2 emission rates for the large petrol SUV and 
speed-time plot (model verification).  

 

The emission algorithms were then used to predict CO2 emissions for the validation dataset, which 

was not used in model development. The time-series plots are shown in Figure 5-5 and Figure 5-6. It 

is clear that the model performs well with regard to the validation dataset. 

 

Figure 5-5: Predicted (red dots) and observed (black line) CO2 emission rates for the small petrol passenger 
car and speed-time plot (model validation).  
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Figure 5-6: Predicted (red dots) and observed (black line) CO2 emission rates for the large petrol SUV and 
speed-time plot (model validation).  

A comparison between the model validation and model verification results with respect to model 

performance (R2, NRMSE) is included in Table 5-2. With respect to prediction errors (NRMSE) and 

goodness-of-fit (R2) the validation and verification show similar results, which demonstrates that the 

emission algorithms are robust with respect to second-by-second prediction performance.  

Model prediction bias is calculated as the percent difference between total predicted (P) and total 

observed (O) CO2 emissions (g) for the entire speed-time profile, i.e. 100  (P-O)/O. For the 

verification dataset the bias is zero percent, as would be expected. The validation dataset indicates 

that model bias varies from 2% to 8%, suggesting a model tendency to slightly overpredict total CO2 

emissions in urban conditions. 

It is noted that spatial/temporal aggregation of second-by-second predictions will reduce prediction 

errors. This is illustrated in Figure 5-7 for the small petrol car for four different spatial resolutions, i.e. 

100 m segments, 500 m segments, 1000 m segments and the CUEDC-P subcycles “Congested”, 

“Residential” and “Freeway” (refer to Figure 3-8). 

8). It is clear that model performance improves and prediction errors are reduced with decreasing 

spatial resolution. 

 

Figure 5-7: Impact of aggregation on CO2 emission prediction error for the small petrol passenger car.  

This is relevant information for application of the hybrid model, and for proper comparison with 

VEPM. For instance, it seems reasonable to use longer driving segments as input to the hybrid model, 

such as subcycles or stop-go-stop segments, to better align with the presumed spatial and temporal 

resolution of VEPM predictions. 
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A few final steps are required to complete the hybrid CO2 emission prediction algorithms: 

 It is important that total drive cycle emissions for the vehicles used in model development 

match those of the average values of similar vehicles in the empirical database. A calibration 

factor  is therefore introduced and computed as the ratio of total cycle emissions (g) for the 

vehicles used in model development to average total cycle emissions of all tested vehicles of 

a particular vehicle class, in the same test conditions (CUEDC-P drive cycle). All CO2 

predictions are multiplied with . Calibration factor values are presented in Table 5-2. 

 A few operational boundaries are applied to the emission simulation. Firstly, instantaneous 

VSP values cannot exceed 110% of the minimum and maximum values encountered during 

the emission tests. Secondly, emission rates are capped at a maximum measured value times 

a factor of 1.5. 

 

Relationship between air pollutants and CO2 

The hybrid model links remote sensing data with CO2 prediction algorithms through an appropriate 

vehicle classification scheme and use of a proxy variable for engine power (VSP).  

Individual remote sensing measurements are highly variable, and very high pollutant-to-CO2 ratios 

occur for specific measurements, often without a clear relationship to VSP. On the one hand this 

highly variable emissions behaviour distorts the relationship between VSP and emission ratio. On the 

other hand these data are valid outliers and they should be retained to ensure accurate mean ratios.  

A simple approach was therefore adopted to establish a quantitative relationship between pollutant-

to-CO2 ratio and VSP. First, measurements with extreme and unrealistic acceleration values were 

removed, i.e. only measurements with accelerations within -6 and +3.5 m/s2 were retained.  

The data were then binned into predefined VSP bins and mean pollutant-to-CO2 ratios were 

computed for each bin. Two options were discussed in section 3.5, i.e. a 6 bin or 14 bin VSP 

classification method. It was concluded that the two methods are not significantly different (p > 0.05) 

when the variability in the emissions data is considered, which means that the simplest method 

(VSP6) can be used.  

Figure 5-8 shows box-and-whisker plots for both binning methods. A box-and-whisker plot is an 

exploratory graphic used to show the distribution of a dataset at a glance. The plots suggest that the 

VSP14 method generates a quantitative relationship between mean pollutant ratio and VSP that is 

‘jumpy’ as high ratios may or may not occur in a particular bin. The VSP6 method is less affected by 

this erratic emissions behaviour because the bins are larger and, as a consequence, the likelihood of 

extreme values occurring within a bin is higher. 
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Figure 5-8: Box-and-whisker plots: mean pollutant ratios versus VSP bin for the small petrol passenger car 
using two methods (VSP6 left charts, VSP14 right charts).  
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The 6 bin VSP approach was used to compute average pollutant-to-CO2 ratios. The results are shown 

Figure 5-9. The red bar indicates a sample size of one measurement. 

 

Figure 5-9: Mean pollutant ratios versus VSP bin for the small petrol passenger car (top charts) and the 
large petrol SUV (bottom charts), including 95% confidence intervals of the mean.  

 

The 95% confidence intervals are also shown, and it is evident that the mean ratios are uncertain. 

The accuracy of the mean ratios can be improved by including more remote sensing measurements 

and increasing the sample size for each bin, which should be feasible as the sample size for the data 

extract has been relatively small.33 The accuracy of the model predictions can be increased by 

aggregating second-by-second model predictions, as was discussed before. 

  

                                                           
33 The sample sizes for VSP bins 1-6 are as follows for the small petrol car (n = 134, 91, 104, 239, 174 and 14) and for the large petrol SUV (n 
= 37, 29, 27, 42, 33 and 1). 
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Final hybrid model structure 

The full hybrid model structure is as follows: 
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Where:  

 et,CO2,j is the predicted second-by-second CO2 emission rate for vehicle class j (g/s),  

 aj presents the idle CO2 emission rate for vehicle class j (g/s) (Table 5-2),  

 b0,j, b1,j and b2,j represent the fitted regression coefficients for vehicle class j (g/s, g/s.kW and 

g/s.kW2, respectively) (Table 5-2), 

 VSPt,j is vehicle specific power for vehicle class j (kW) and it represents an estimate of 

second-by-second engine power (kW) at time t, 

 Mj is a representative on-road vehicle mass of vehicle class j (tonne), 

 gt is the road gradient (%) at time t,  

 at represents second-by-second acceleration (m/s2) at time t, 

 t represents instantaneous vehicle speed (m/s) at time t, 

 et,p,j is the predicted emission rate  (g/s) at time t for pollutant p (CO, HC, NOx) and for vehicle 

class j, 

 j is the vehicle class calibration factor for CO2 for vehicle class j (Table 5-2), 

 Rt,p,VSP6(i) is the mean pollutant-to-CO2 ratio for VSP6 bin i at time t for pollutant p (CO, HC, 

NO) and for vehicle class j, as measured with remote sensing, 

 Mp is the molar mass of pollutant p, which is 28.0, 44.1 and 46.0 g/mol for CO, HC and NOx, 

respectively, 

 MCO2 is the molar mass of CO2, which is 44.1 g/mol, 

 Up is the unit conversion factor for pollutant p, which is 1 for CO (%/%) and 0.0001 for HC and 

NO (ppm/%), and 

 j,NO2 is the proportion of exhaust NO2 in NOx emissions for vehicle class j that is not 

measured with remote sensing (this is assumed to be 0.04 for light-duty petrol vehicles). 

Note that the hybrid model uses remote sensing measurements of NO, adds direct NO2, and predicts 

NOx emission rates, expressed as NO2-equivalents. 



 

The use of remote sensing to enhance motor vehicle emission modelling in New Zealand  61 

 

5.2 Hybrid model application - drive cycles 

The hybrid model predicts emissions at a high resolution and requires 1 Hz speed-time data and a 

selection of the appropriate vehicle class. This information can be obtained from various sources, 

including microscopic transport models, on-road GPS measurements and drive cycles.  

As an example of a possible application, various Australian drive cycles were combined to create a 

single input file to the model. These drive cycles are the CUEDC-P (Composite Urban Emission Drive 

Cycle for Petrol vehicles, Orbital, 2005), six CUEDC-Ds (Composite Urban Emission Drive Cycles for 

Diesel vehicles, Brown et al., 1999), the AUC (Australian Urban Cycle, Watson, 1995 and Watson and 

Trayford, 1999), the MPC (Melbourne Peak Cycle, Watson et al., 1982) and the PDC (Perth Drive 

Cycle, Kenworthy et al., 1983 and Lyons et al., 1986). The drive cycles were broken up into 68 stop-

go-stop segments, i.e. so-called ‘microtrips’. An example of a segmented drive cycle is shown in 

Figure 5-10. 

 

Figure 5-10:  Example of dividing a drive cycle into microtrips.  

Figure 5-11 (next page) shows an overview of all the microtrips that were generated. Microtrips with 

a length of 100 m or more were used as input to the hybrid model. The hybrid model was run to 

compute total emissions and emission factors (g/km) for each vehicle class and air pollutant. An 

example of an output table is shown in Table 5-3. These emission factors can be compared with 

emission factors used in VEPM.  
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Figure 5-11:  Microtrips used as input to the hybrid model.  
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Table 5-3: Example of output results table (CO, small petrol passenger car).  
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Figure 5-12 shows the emission factor results versus average (microtrip) speed for all pollutants in 

scatter plots. The plots also show the hot running emission factors that are predicted by COPERT 

Australia for Australian light-duty vehicles (black dotted line), which includes petrol, diesel and LPG 

cars, SUVs and LCVs. Similar plots can be created using VEPM emission factors instead of COPERT 

Australia. 

 

 

Figure 5-12:  Emission factors predicted with the hybrid model as a function of average speed, and COPERT 
Australia predictions for the LDV fleet.  

It is interesting to note that the light-duty fleet averaged emission factors for CO, HC and NOx 

predicted by COPERT Australia appear to be reasonably consistent with the predictions made by the 

hybrid model for two specific vehicle classes. This indicates that the hybrid model produces 

reasonable results. 
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5.3 A hybrid model for New Zealand 

The main benefit of the hybrid model is that it will make use of a large database of New Zealand 

specific remote sensing data. There is, however, also additional functionality as compared with 

VEPM, because the hybrid model can make emission predictions at a high resolution in time and 

space.  

The hybrid model can be used to compute average vehicle emission factors (g/km) for various drive 

cycles or specific driving patterns of any length. A driving pattern is a second-by-second speed-time 

profile that has been recorded (measured) on the road or has been generated by a (microscopic) 

traffic model. It is rapidly becoming easier to collect speed-time data in the field by anyone who 

travels on public transport or by car. An example is a smart phone app called ATLAS II34, which has 

been used in New Zealand (Safi et al., 2015). The app allows for quicker and less involved data 

collection efforts and records speed in time.  

There are a number of developments that are expected to lead to an increased use of high resolution 

models: 

 There is an increasing focus on the reduction of population exposure to air pollution and 

(health) risk. As a consequence, it will be important to know exactly which parts of the 

population are exposed to relatively high air pollution levels (e.g. near busy roads), what the 

level of impact is, and when this occurs. This type of assessment requires a fine spatial and 

temporal allocation of vehicle emissions in study areas, which can be achieved with the 

hybrid model.  

 There is increasing interest in the effects of local traffic conditions on traffic emissions, fuel 

consumption and exposure to air pollution. It is essential to know if local traffic measures 

(signal settings, roundabout versus traffic light, dynamic speed limits, etc.) adversely affect or 

improve air pollution and greenhouse gas emissions. Sensitive models are therefore needed 

to accurately predict the correct direction and magnitude of these effects as this kind of 

measure typically generates relatively small but still significant impacts. 

Development of a New Zealand hybrid remote sensing model would require the following steps: 

 Analysis of the New Zealand on-road fleet with respect to variables that are known to govern 

fuel consumption and CO2 emissions (fuel type, vehicle mass, rated engine power/engine 

capacity)  

 Determination of an appropriate vehicle classification for the New Zealand fleet achieving 

relatively homogeneous segments with respect to the vehicle parameters that govern fuel 

consumption and CO2 emissions. 

 Development of CO2 emission algorithms for each New Zealand vehicle class using laboratory 

measurements from e.g. Australia or other countries for representative vehicles, in the 

absence of New Zealand data. 

                                                           
34 ATLAS II (Advanced Travel Logging Application for Smartphones II) is a smart phone app, which is downloadable from the AppStore. It 
aims to efficiently collect travel survey data. The app runs continuously in the background and uses advanced battery optimisation 
algorithms without interference with normal phone usage. The phone receives and processes real-time GSM and GPS signals to detect and 
record the device’s location on a second-by-second basis. Recorded data includes a timestamp, longitude, latitude and instantaneous 
speed. The app user can upload and view the trips on a map and download the travel data in a spreadsheet format. 
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 Compute average pollutant-to-CO2 ratios for each VSP bin and for each vehicle class using 

remote sensing data collected in New Zealand. 

  Collect New Zealand on-road driving data, for instance using mobile phone apps such as 

ATLAS II. 

A New Zealand hybrid model will provide an alternative and independent method to predict vehicle 

emissions in New Zealand, and predictions can be directly compared with VEPM, as a ‘validation’ 

exercise. Any differences between the models will provide policy makers with information regarding 

the possible range of air quality impacts due to motor vehicles. If predictions by the two model turn 

out to be quite similar, then this this will increase confidence in vehicle emission predictions and 

scenario modelling for the New Zealand fleet. 
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6 Recommendations for the validation study 
This section makes recommendations for the VEPM validation study. 

6.1 Literature review and possible approaches 

Seventeen international vehicle emission model validation studies using remote sensing were found 

and reviewed. Appendix A presents an overview of these studies. Depending on the specific case 

(pollutant, vehicle class, emission model), both small discrepancies (i.e. good agreement) and large 

discrepancies have been reported.  

For instance, Kuhns et al. (2004) compared MOBILE6/PART5 to RSD data and reported differences 

varying between a factor +3 or –2 for CO and HC, and even a factor of 5 for PM. Large differences 

between US models and RSD based emission factors were also found in more recent US studies (e.g. 

Fujita et al., 2012). Sjödin and Jerksjö (2008) concluded that the comparison with RSD data shows 

that three European models (COPERT / HBEFA / ARTEMIS) can perform well, but can also perform 

very poorly (differences up to a factor of 23), depending on the pollutant, vehicle class and model. 

Beevers et al. (2012) compared trends in NOx emission factors (g/km) determined using remote 

sensing data with those used in HBEFA and the UK NAEI and found reasonable agreement for petrol 

cars, but large differences for diesel cars.  

So it is clear that no generic conclusions can be drawn from the literature. As a consequence, a 

validation study comparing New Zealand remote sensing data with VEPM will be required to examine 

the accuracy of VEPM. 

In general, the literature review shows that comparisons between remote sensing and model 

predictions are made on a gram pollutant per kg fuel basis after selecting the appropriate traffic 

conditions in the emission models for hot running conditions. However, the studies do not consider 

meteorological conditions, and ignore cold start, evaporative emissions (‘running loss’ and resting 

loss HC emissions) and non-exhaust emissions (PM). In addition, selection of corresponding ‘traffic 

conditions’ in the emission model is a somewhat ‘rubbery’ step in the model validation that is not 

recognized as such in the literature. In other words, the selected corresponding traffic situation in 

the emission model is either an arbitrary process (e.g. choosing a particular traffic situation such as 

‘urban distributor road, 50 km/h speed limit, free-flow conditions’), or the use of measured average 

speeds by the RSD to select a corresponding emission factor in an average speed model like VEPM 

does not take into account the large difference in spatial resolution (few kilometres versus a few 

meters, see section 3.5). 

In the next sections, a more thorough approach to validation of VEPM is proposed to ensure a 

comparison with remote sensing data is put on an even footing as much as possible. Nevertheless, it 

is recommended to also explore comparison of VEPM predictions with other independent data such 

as near-road air quality measurements or tunnel studies (e.g. Bluett and Fisher, 2005). Each 

measurement technique, whether it is laboratory emissions testing, remote sensing or a tunnel 

study, has its own strengths and weaknesses, but together they should provide a reasonably robust 

validation of VEPM.35  

  

                                                           
35 For more info on this refer to Smit, Ntziachristos and Boulter (2010). 
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6.2 Summary of preparation steps for the validation study 

It is clear from the previous discussions that there are several factors that impact on remote sensing 

and/or the basis for VEPM (laboratory emission tests). This section briefly outlines the necessary 

preparation steps that are required before the validation study can be conducted.  

It is not possible to make a statement about which measurement method leads to more accurate 

vehicle emission predictions because both methods have particular strengths and particular 

challenges that could introduce bias in emission predictions based on these measurements. To 

ensure a valid comparison, the remote sensing measurements and VEPM predictions need to be 

modified or corrected, to the extent that this is possible. 

Table 6-1 provides an overview of issues and challenges with remote sensing and laboratory vehicle 

emission measurements, effectively summarising the main points discussed in section 0. It also 

recommends specific actions to verify and possibly control for significant factors in the validation 

study.  

An initial assessment of the relevance/importance of the individual factors is also included in the 

table within […]. This assessment is based on expert judgement only, and uses three qualitative 

(colour coded) levels: ‘low’, ‘medium’ and ‘high’. However, it is recommended that a more in-depth 

sensitivity analysis is conducted to adequately quantify the impacts of these factors on the outcomes 

from a validation study, as will be discussed in section 6.4. 
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Table 6-1: Overview and factor control in the VEPM validation study.  

Factor Can be 
Controlled? 

How? Challenges and Remaining Issues 

Sampling 
strategy 

(section 3.1) 

Partially for 
remote 
sensing 

VEPM: 
- add running loss and resting loss 
emissions to hot running emission 
factors (c) [medium (HC only)] 
- vary predictions with a plausible 
range of start emission impacts (c) 
[high] 
 
Remote sensing: 
- use of multiple RSD sites (a) [high] 
- cold start: analysis of vehicle 
registration address database and 
compare with distance to RSD location 
(c) [high] 
 
Note on future options: 
- employ long-path RSD on multilane 
freeways (a) [medium] 
- modified RSD setup to capture 
vehicles with vertical exhausts (b) [high] 
 

Laboratory: 
- small sample size 
- excluding high emission events 
- underrepresenting high emitters 
- vehicle sourcing 
- representative gear shift behaviour 
- representative dynamometer loads 
 
Remote sensing: 
- large portion of invalid data 
- excluding specific traffic conditions(a) 
- excluding vehicle types e.g. trucks (b) 
- only moving vehicles 
- modification of ‘normal’ drive behaviour 
- extent of inclusion evaporative and cold 
start emissions is unknown (c) 

 

Measurement 
techniques 

(section 3.2) 

Partially for 
remote 
sensing 

Remote sensing: 
1 - quality verification and examination 
of NZ data (d,e,f,g):  

 potential plume interference (section 
3.2.1) [medium] 

 ensure measurement consistency for 
multiple sites [high] 

 identify and correct for potential 
measurement offsets (section 3.2.3) 
[high] 
2 -  NO data to represent NOx (section 
3.2.6) 

(h)  

  include direct NO2 emissions [high] 

 express NOx as NO2-equivalents 
- develop NZ specific FID scaling factor 
for HC (section 3.2.6) (i) [high] 
 

Laboratory: 
- FID response factors 
- PM measurement issues 
- Lack of details regarding underlying EU test 
programs 
 
Remote sensing: 
- low signal to noise ratios (d) 
- sensitive to equipment vibration (e) 
- residual plume interference (f) 
- artificial offset (optical misalignment) (g) 
- accurate detection of low emissions 
- only measuring NO (h) 
- NO to NO2 conversion in plume 
- NDIR/FID compatibility (i) 
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Table 6-1 (Continued): Overview and factor control in the VEPM validation study.  

Factor Can be 
Controlled? 

How? Challenges and Remaining Issues 

Emission factor 
computation 
(section 3.3) 

Mostly Remote sensing: 
- harmonised H/C ratio (section 3.3.3) 
[low] 
- develop NZ specific fuel carbon 
content (section 3.3.3) (j) [low] 
- develop hybrid modal – remote 
sensing model (l) [high] 
- correct for humidity and ambient 
temperature (section 3.3.3 and 3.6) (m) 
[medium (CO/HC)/high (NOx)] 
 
VEPM: 
- derive vehicle class specific fuel 
consumption rates for combination 
with RSD data, refer to equation 4 (k) 
[high] 
- correct for humidity and ambient 
temperature 36 (section 3.3.3 and 3.6) 
(m) [medium (CO/HC)/high (NOx)] 
 

Remote sensing: 
- PM not included in combustion equations 
- assumed carbon content of the fuel (j) 
- assumed fuel consumption rates (k) 
- incompatible resolution for assumed fuel 
consumption rates (l) 
- no correction for humidity or ambient 
temperature (m) 
 
 
 

Fleet 
composition 
(section 3.4) 

Yes Remote sensing: 
- aggregate remote sensing data to 
same vehicle technology classes as 
defined in VEPM (n) [high] 
- use detailed remote sensing 
information to examine variability in 
local fleet composition and impact on 
emission levels (n) [high] 
 

Laboratory: 
- vehicle sample bias (n) 
 
Remote sensing: 
- vehicle sample bias (n) 
- representativeness of RSD sites 

Driving 
conditions 

(section 3.5) 

To some 
extent 

Remote sensing: 
- develop hybrid modal – remote 
sensing model (p) [high] 
- examine speed-acceleration 
distributions in NZ data (q) [high] 
 
VEPM: 
- analysis of VSP distributions in drive 
cycles and comparison with remote 
sensing VSP data, VSP correction if 
required (o) [high] 
 
Note on future options: 
- resolve issues with acceleration 
measurements (a) [high] 
 

Laboratory: 
- adequately accounting for real-world 
driving behaviour 
- unclear if drive cycles reflect New Zealand 
driving behaviour (o) 
- exclusion of factors such as road grade and 
aircon use 
 
Remote sensing: 
- incompatible spatial and temporal 
resolution with laboratory tests (p) 
- VSP does not account for all engine load 
factors, gear shift behaviour and history 
effects 
- time alignment errors 
- unexplained errors in acceleration 
measurements (q) 
 

 

                                                           
36 This means either normalise RSD to 25C or use ambient temperature correction in VEPM. 
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Table 6-1 (Continued): Overview and factor control in the VEPM validation study.  

Factor Can be 
Controlled? 

How? Challenges and Remaining Issues 

Meteorological 
conditions 

(section 3.6) 

Yes Remote sensing: 
- correct for humidity and ambient 
temperature (r) [medium (CO/HC)/high 
(NOx)] 
- air density effects can be ignored for 
the NZ sites [low] 
  
VEPM: 
- correct for humidity and ambient 
temperature (r) [medium (CO/HC)/high 
(NOx)] 
- vary predictions with a plausible 
range of air conditioning use and 
impacts (s) [medium] 
 

Laboratory: 
- typically measured at standard test 
conditions 
- exclusion of effects of aircon use 
 
Remote sensing: 
- meteorological data during remote sensing 
testing required 37 (r) 

- information on in-fleet aircon use and 
emission impacts (s) 
 
 

Fuel quality 
(section 3.7) 

Yes VEPM 
- correct predictions to reflect 
commercial New Zealand fuels (t) 
[medium] 
 

Laboratory: 
- reflects fuels used in overseas testing 
programs (t) 
 

Ageing effects 
(section 3.8) 

Yes Remote sensing: 
- verify mileage correction algorithm 
with deterioration rates determined 
with RSD data over multiple years (u) 
[high] 
 
VEPM: 
- ensure mean vehicle class age 
corresponds with remote sensing data 
[high] 
 

Laboratory: 
- reliability of mileage correction factors 
derived from laboratory data (u) 
 

Vehicle loading 
(section 3.9) 

No Remote sensing: 
- use fuel based emission factors or 
pollutant-to-CO2 ratios which are less 
affected by vehicle loading (v) [medium] 
 
VEPM: 
- vary predictions with a plausible 
range of vehicle loads (v) [medium] 
 
 

Laboratory: 
- adequately accounting for real-world 
vehicle load distributions 
  
Remote sensing: 
- lack of information regarding in-fleet 
vehicle loads (v) 
 

 
  

                                                           
37 If not available, these data can retrospectively be obtained from meteorological data measured at air quality monitoring stations close to 
the RSD sites. 
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6.3 Internal versus external errors 

Emission predictions are affected by both internal and external errors. Internal errors are associated 

with the model itself (e.g. emission factors). External errors are associated with the errors in the 

input.  

It has been shown that external errors are at least as important as internal errors (Smit, 2008a). 

Validation data for which traffic volume, traffic composition and driving behaviour are known 

(tunnel, remote sensing, laboratory and on-board measurements) tend to quantify internal errors. In 

contrast, studies that combine emission and dispersion models (ambient concentration, mass-

balance) and/or traffic flow models (mass-balance) tend to quantify both internal and external errors 

of all models concerned (transport, emission and dispersion). As a consequence, these studies 

validate a ‘modelling chain’ and do not directly assess the prediction errors of traffic emission 

models. This complicates the explanation of the discrepancies between predictions and observations. 

For instance, errors due to dispersion modelling may offset or amplify modelling errors, but with an 

unknown direction and magnitude. 

However, given the detailed vehicle information (type, fuel, emission standard, technology) that is 

recorded with a RSD, it is also possible to compare emission model input data (and their impact on 

emission predictions) that are commonly provided by other sources such as traffic models and 

national statistics (‘generic’ fleet composition). This will allow separate examination of internal and 

external errors in a New Zealand validation study. Given the importance of external errors it is 

recommended that these are examined separately in the project, i.e. start with examination of 

internal errors and then proceed with external errors. 

6.4 Sensitivity testing 

It is clear from previous sections that a number of preparation steps are required before RSD data 

can be compared with VEPM predictions. After taking those steps, several assumptions still underpin 

the RSD results, each one with their own inherent uncertainty. These assumptions may or may not 

have a significant impact on the RSD results.  

To take this uncertainty into account in the validation study and to address concerns that are raised 

with respect to the use of remote sensing as a validation method, it is suggested that a sensitivity 

analysis is conducted. Sensitivity analysis (SA) can be used to examine the uncertainty in the 

predictions (VEPM) and/or measurements (RSD) of traffic emissions. For instance, VEPM can be used 

to quantify the impacts of cold starts and different vehicle load distributions. Similarly, a range rather 

than a single value (e.g. , , H/C ratio) can be used in the computation of emission factors from the 

remote sensing data (refer to equations 3 and 4).  

There are different SA methods, but mathematical SA is well-suited to quantitatively assess the 

sensitivity of a model output to the (possible) range of variation of an input (Smit, 2008a). For 

instance a nominal range sensitivity analysis (conditional NRSA) is suitable.38  

The sensitivity of the model/measurement data to the underlying assumptions can then be 

quantified in terms of distributions of emission values through simulation.  

                                                           
38 NRSA is applicable to deterministic models and typically evaluates the effect of model outputs exerted by individually varying only one of 
the model inputs (OAT), while holding all other inputs at constant values. Conditional NRSA conditions the sensitivity on specific sets of 
input values (“situation”). These inputs are varied across their entire range of plausible values (two extreme values), which are derived 
from either test data, expert judgement or literature review. For each situation the impact on the results is then evaluated. 
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These emission distributions represent a range of VEPM predictions and RSD measurements (rather 

than point estimates), which can be compared. 

6.5 Suggested statistics and graphic presentations 

The following plots and statistics are suggested for graphical and statistical analysis: 

Initial Checks 

 Compare VSP time distributions between cycles used for VEPM and RSD. Use a statistical test 

such as the Kolmogorov-Smirnov test to determine if they are significantly different.  

 Multiply each VSP bin with average fuel-based emission factors to compute VSP-weighted 

average emission factors for both sets, and employ statistical testing to determine if they are 

significantly different. 

 Use VSP distributions to select corresponding average speed ranges in VEPM. 

 Examine the differences in emission ratios (g/g CO2) and emission factors (g/kg fuel) between 

RSD sites, examine the robustness of these ratios and relate those differences to VSP and 

fleet composition (e.g. regression analysis). 

Analysis options – comparison of model with measurement 

 Permutations: 

o emission ratios: g pollutant/g CO2 

o emission factor types: g pollutant/kg fuel or g/km 

o different levels of aggregation (e.g. model year, vehicle class, aggregated) 

o prediction and measurement ranges (min, mean/median, max) instead of point 

estimates – both RSD and VEPM 

 Emission inventory comparison and calibration: fuel-based RSD emission inventory versus 

traffic model VEPM emission inventory. 

 Present scatter plots of mean RSD versus VEPM results, where each data point is the average 

emission factor value for a particular model year: determine regression trend line and 

statistics, focus on correlation, slope and intercept (e.g. Pokharel et al., 2000, Fig. 1). 

 Examine emission factor distributions (ECDF), compare relevant statistics (mean, median, 

99th percentile etc. – refer to e.g. Smit and Bluett, 2011) and use statistical tests to determine 

if they are significantly different. Another option for emission factor distributions is emission 

factors on the y-axis and percentile bins on the x-axis. 
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 Collect the drive cycles used in the (UK) NAEI databases, which underlie VEPM, and compute 

the proportion of time spent in each VSP bin. Compute the mean RSD ratio for each 

individual cycle and plot them against average (cycle) speed, then fit a mean ratio prediction 

algorithm to the data, convert to g/km and compare with the speed-based algorithms as 

used in VEPM. 

 Explore the feasibility of an RSD-based correction factor. 

 Develop a hybrid micro-scale emission model based on remote sensing for New Zealand. 

Apply the model and compare detailed hybrid model predictions with VEPM. 
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7 Description of the Remote Sensing database 

7.1 Description of the campaigns  

NIWA has consolidated the data from four Auckland based RSD campaigns in 2003, 2005, 2009 and 

2011 into a database. The focus of these campaigns has been on the light duty vehicle fleet. 

Other campaigns have taken place including Auckland in 2004 for buses and trucks, Wellington in 

2005 and 2006, Brisbane in 2006 and Perth and Sydney in 2007. These data are not currently 

included in the database. 

7.2 Instrumentation 
NIWA used the RSD3000 in the 2003 campaign and then purchased the RSD4000EN model, also called 
in some documentation RSD4600. Before the 2011 campaign the software was updated to ‘nextgen’, 
which did not change any of the underlying assumptions or values that calculation of emissions are 
based upon.  

7.3 Sites of measurement  

15 sites were used for the 2003 campaign; only four were continued in the later campaigns. Many of 

the sites from the original 2003 campaign were rendered unsuitable for remote sensing as they had 

been either upgraded to more than one lane, installed with ramp metering signals which interrupt 

the traffic flow, or no longer existed. Sites that are in similar areas to those lost have been brought 

online as replacements. The aim has always been to include as wide a distribution of sites across 

Auckland as possible, both geographically and in terms of surrounding land use and potential vehicle 

mix. Figure 7.1 shows the seven sites used in the 2011 and 2009 campaigns. They were all used in 

2005 along with 16 others.  
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Figure 7-1: Remote Sensing Sites in the 2011 NIWA Remote Sensing Campaign.  

The 2011 campaign consisted of 7 sites that have all been used in previous campaigns. Table 7.1 from 

the 2011 report compares them over the years. 

Table 7-1: Remote Sensing Sites in the 2011 NIWA Remote Sensing Campaign.  

Site No Site Name Site Code 2011 2009 2005 2003 

1* Lagoon Dr AUC2 4,045 4,437 7,785 3,884 

2* Lambie Dr (S) MAN2 930 1,339 4,295 2,379 

3 Universal Dr WAI5 2,052 5,385 2,545 n/a 

4 West End Rd AUC8 1,133 1,066 2,555 n/a 

5 Whangaparaoa Rd ROD3 9,213 3,826 3,850 n/a 

6 Elliot St (W) PAP1 1,349 1,342 1,367 1,447 

7 Upper Harbour Highway (W) NOR5 5,660 5,558 2,992 1,937 

Total valid readings 24,382 22,953 25,389 9,647 

Total individual vehicles* 20,895 21,383 23,310 9,338 

* Note some vehicles went through the remote sensor more than once – in one case 67 times – and 

therefore the number of individual vehicles captured is lower than the number of valid readings.  The 

results presented in the following sections show the number of individual vehicles. 
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What is not shown in the 2011 report is a comparison of the capture rates at these sites, that is, the 

number of valid readings to total readings obtained. This can be done by collating the data in all four 

campaign reports, as shown in Table 7-2. For a reading to be valid it must firstly have valid RSD 

readings, meaning the exhaust plume was measurable, and it must also have a readable number 

plate captured by the imaging, in order to link those readings with an individual vehicle. 

Table 7-2: Capture rates at sites over the four campaigns.  

Site No Site Name Site Code 2011 2009  2005 2003 

1 Lagoon Dr AUC2 48% 54%  60% 78% 

2 Lambie Dr (S) MAN2 37% 45%  72% 73% 

3 Universal Dr WAI5 49% 50%  55% n/a 

4 West End Rd AUC8 47% 57%  87% n/a 

5 Whangaparaoa Rd ROD3 67% 47%  57% n/a 

6 Elliot St (W) PAP1 60% 51%  76% 86% 

7 Upper Harbour Highway (W) NOR5 56% 63%  73% 90% 

Mean Capture rate 52% 52%  69% 82% 

 

The capture rates show a decline over the campaigns. Potential reasons for this include changes in 

the road layout at the sites, which make it more likely a vehicle will pass through the RSD while not 

actively accelerating. Over the campaigns there have been changes in the layout of the 

instrumentation at some sites to try to combat these effects or increase the capture rate. The fleet 

composition recorded at these sites has not changed substantially, so an increase in unreadable 

vehicles will not be a major factor. Changes to the instrumentation, either through upgrades, 

servicing or degradation of the instrument over time appear an unlikely cause, according to the 

developers, ESP. The importance of the decline in capture rates depends upon whether any 

particular types of vehicle are captured less frequently than they used to be, thus introducing a 

sampling bias over time.  

7.4 The Motochek database 

Valid readings (vehicles with valid measurements and a readable number plate image) are collated 

and the number plates are sent to the NZTA’s Motochek service, which provides confidential 

information about each vehicle and owner. Table 7-3 shows the information provided by Motochek 

that is incorporated into the RSD database. This information is crucial in allowing the emissions to be 

grouped by vehicle class, age, mileage and fuel type. It could also be used to potentially filter out cold 

start emissions, from cars measured too close to their registered address, or brand new cars still 

being driven in. 
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Table 7-3: database field acquired from Motochek for every vehicle surveyed.   (From the 2011 report) 

Motochek database field Description of data 

Make Company which manufactured the vehicle 

Model  

Year of manufacture  

Body style Saloon, hatchback, station wagon, utility, light van, 
flat deck truck, heavy bus/service coach etc. 

Main colour  

Engine capacity Cc 

Engine power  kW 

Vehicle type Passenger car/van, goods van/truck/utility, motorcycle, 
bus, trailer/caravan, tractor etc. 

Purpose of vehicle use Private passenger, taxi, commercial passenger 
transport, licensed goods, other (standard) goods, 
ambulance, fire brigade, diplomatic etc. 

Fuel type Petrol, diesel, LPG, CNG, other 

Country of origin Country where vehicle was manufactured 

WOF expires Warrant of fitness expiry date 

Registration status Active, cancelled or lapsed 

Country of first registration Country where vehicle was first registered 

Gross vehicle mass kg 

TARE weight kg 

Odometer reading km or miles 

Plate type Standard, trade, personalised, investment, diplomatic or 
crown 

Ownership Private (male or female), company, fleet or lease 

Subject to RUC Subject to road user charges 

 
It should be noted that the information Motochek provides introduces its own uncertainties. For 
instance low odometer readings will mostly be new cars but may include old cars that have ‘clocked’ 
their odometer and have travelled more than one million km. Registered address details may not be 
actually where the vehicle is parked when not in use. 

7.5 The structure of the RSD database 

The RSD data is stored as a Microsoft Access database. The structure is that the data itself are kept in 

two large tables: one contains all the data from the RSD instrumentation itself, the other contains all 

the data retrieved from the Moto-check database.  

‘Surrounding’ these two core tables are a number of look-up tables that list out all the variables and 

codes used within them. The screen grab (Figure 7-2) shows the main tables and dependent tables 

and the list at the side includes the look-up tables. 
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Figure 7-2: Structure of the RSD database.  

 

7.6 QA procedures to clean up the database for use 

All the raw data from the RSD are stored within the database. Although the user is free to create 

modified databases with only subsets of the raw data (i.e., QA’d data) if they wish, and interrogate 

the database in Access, the current tool for QA and analysis is the R statistics package. A series of 

precursor scripts have been developed by Martin Unwin of NIWA to load the database into R and 

then strip out unusable data (see Appendix 3 for these steps). The end result is a set of dataframes 

that are ready to be analysed. (A minor restriction to this approach is that the function that first 

reads the Access database into R only works with the 32 bit version of R, not 64 bit.) 
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8 Conclusions 

The use of remote sensing to measure vehicle emissions is not new, dating back to 1971. 

Disagreement between vehicle emissions models and tunnel measurements in the 1980s-1990s 

contributed to increased use of remote sensing devices (RSDs) as an independent approach to 

measure real-world vehicle emissions. Remote sensing has been used extensively over the last two 

decades for various purposes around the world, including but not limited to identification of high-

emitting vehicles, examination of on-road vehicle emissions distributions and trend analysis. 

This study has scoped out and tested the best and most useful ways for validation of the New 

Zealand vehicle emission model VEPM39 using remote sensing data for CO, THC and NOx. This was 

done through an examination of potential issues with the remote sensing data and ways to address 

them, as well as a discussion and demonstration of various (possible) ways to compare remote 

sensing data with VEPM emission factors. 

Testing the overall accuracy of vehicle emission models is challenging, as the ‘true’ emission values in 

urban networks are unknown and cannot practically be determined by measurement. As a 

consequence, VEPM predictions and remote sensing data are both independent estimates of the true 

vehicle emissions in a road network.  

If both VEPM and the remote sensing data show similar predictions of vehicle emissions, then this 

would increase the level of confidence that VEPM predictions are in fact accurate. If not, then one or 

both the VEPM model predictions and remote sensing estimates are not accurate. More validation 

work using other independent methods such as tunnel studies, near-road air quality sampling etc., 

and further analysis are required to determine where the (main) errors occur (specific traffic 

situations, specific vehicle classes, etc.). 

Laboratory measurements (‘bag’ and ‘modal’, engine and chassis dynamometer) using drive cycles 

have remained the prominent empirical base for vehicle emission model development around the 

world. Other methods such as remote sensing, tunnel studies and on-road or near-road modelling 

have been commonly used for emission model validation purposes, and have contributed to an 

increased understanding of model accuracy and real-world emissions behaviour of vehicles.  

There are specific issues with and points of attention for all emission measurement methods. The 

strengths and weaknesses of both laboratory measurements, on which VEPM is based, and 

independent remote sensing measurements have therefore been examined. This is important to 

ensure that a valid comparison of methods is made and to better understand where potential 

differences may come from.  

There are fundamental differences between emission estimates derived from remote sensing 

measurements and laboratory-based model predictions that need to be accounted for in the 

validation study. Nine fundamental differences were identified and discussed in this study: 

 

 

 

                                                           
39 Vehicle Emission Prediction Model. 
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 1. Different sampling strategies 

Remote sensing typically collects ‘snapshot’ on-road emissions data from a relatively large 

sample of moving vehicles, whereas laboratory testing collects drive cycle (trip) based 

emissions data from a relatively small sample of both stationary and moving vehicles 

under controlled conditions. 

For proper emission model validation, emission trend analysis or emission inventory 

development, remote sensing data for multiple sites are required to properly reflect 

the real-world variation in weather, road features, local fleet mix and driving 

behaviour. 

Remote sensing can record emission levels for a relatively large number of vehicles, but the 

system can produce a significant portion of invalid data (20-70%). In addition, the 

equipment setup and weather conditions can modify driving behaviour and result in 

exclusion of relevant vehicle types (e.g. trucks, cars with caravans) and traffic 

conditions (e.g. congested conditions, multi-lane highways). 

Laboratory measurements can exclude high emission events when the high quality 

measurement equipment cannot handle excessive emission levels. More subtle factors 

that may create bias, but they are difficult to quantify, are the representativeness of 

gear shift behaviour of vehicle operators in laboratory conditions and how well 

dynamometer settings and loading algorithms reflect on-road driving conditions. 

The usual Remote Sensing configuration used in New Zealand does not capture trucks and 

buses with vertical exhausts.It is recommended that any future remote sensing 

programs in New Zealand are able to include these vehicles. 

Given the increasing relevance of cold start emissions it is important to examine the 

(expected) proportion of cold start vehicles in the remote sensing measurements for 

each location, and to determine if the measured emissions are likely to be hot running 

emissions, or not (e.g. using license plate information and analysis of travel time to 

RSD site).  

Although remote sensing studies often state that only exhaust emissions are measured, this 

is incorrect, as evaporative emissions are included. It is unclear, however, to what 

extent evaporative running loss and resting loss hydrocarbon (HC) emissions are 

captured in the ‘exhaust plume’.  

 

 2. Different measurement techniques 

Remote sensing uses different measurement methods compared to laboratory testing on 

which VEPM is based, and these differences need to be considered when a validation 

study is conducted.  

Whereas laboratory emissions are measured with standard pollutant analysers (FID, 

gravimetric filter method, chemiluminescence, NDIR), remote sensing system uses the 

principle that the majority of gases will absorb light at particular wavelengths (UV/IR).  
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Compared to the controlled environment of laboratory measurements, it is more 

challenging for remote sensing to measure vehicle emissions accurately. For instance, 

RSD measurements can be sensitive to equipment vibration caused by passing 

vehicles. There are also specific artefacts such as the reported artificial offset in the 

RSD HC measurements due to an ‘optical misalignment’. It is therefore essential to 

perform thorough quality checks on remote sensing data before it is used in the 

validation study, in addition to the internal and automated data verification 

procedures already used by the RSD.  

The density of the observed exhaust plume and path length are highly variable and are a 

function of the height of the vehicle’s exhaust pipe, wind direction and speed, and 

turbulence behind the vehicle, amongst other factors. The RSD can therefore only 

reliably measure ratios of CO, HC and NO to CO2. These ratios are assumed to be 

constant in a particular vehicle’s exhaust plume. However, RSD data are naturally noisy 

and sufficiently large sample sizes are required to obtain significant results. 

The remote sensing measurements include a ‘background correction’ by subtracting the 

concentration measurements just before the ‘beam block’ (detecting vehicle presence) 

from the concentration measurements just after the ‘beam block’. It is unclear, 

however, to what extent residual plume interference affects overall remote sensing 

measurements. It is therefore recommended that the New Zealand RSD data are 

examined to see if this effect can be detected. 

Laboratory measurements have their own challenges and issues. For instance, FID will not 

adequately detect all hydrocarbon species present in vehicle exhaust, which will create 

an artefact. 

International comparison studies indicate that substantial differences between remote 

sensing and laboratory measurements can be expected at individual vehicle level, but 

that aggregated emissions data will yield reasonable agreement. 

Interestingly, comparison of remote sensing results with on-board and tunnel studies 

indicate a better agreement with remote sensing measurements than comparisons 

with laboratory measurements, even at an individual vehicle level. This provides 

further confidence that use of independent RSD data to ‘validate’ VEPM predictions is 

a reasonable approach. 

Potential issues with low sensitivity of RSD at low concentration values were examined 

using modal laboratory emissions test data. This work indicates that the impact of zero 

versus low emission measurements on the mean pollutant ratios is small and typically 

generates an (underestimation) error within 5%. 

There are a number of incompatibility issues between laboratory and remote sensing 

techniques, with NO and THC measurements in particular, which require further data 

preparation steps. These include accounting for direct NO2 emissions, expressing NOx 

emissions as NO2 equivalents, determination of an accurate fleet average H/C ratio in 

the exhaust gas for the New Zealand fleet and computation of an appropriate HC 

scaling factor e.g. using New Zealand VOC emission profiles. 
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 3. Different determination of emission factors 

Remote sensing uses different calculations to determine emission factors as compared to 

standard laboratory testing on which VEPM is based, and these differences need to be 

considered when a validation study is conducted. 

Laboratory emission test results are directly converted into distance-based emission factors 

(g/km). 

RSD data are converted into emission factors expressed as grams per litre or kg of fuel 

burned using a chemical mass (carbon) balance approach, which excludes PM, and by 

making assumptions regarding the carbon content of the fuel and an appropriate 

‘NDIR to FID’ scaling factor for HC. Distance-based emission factors (g/km) are then 

estimated by making assumptions about representative fuel consumption rates. 

Both laboratory and remote sensing computations are corrected for ‘background 

concentration’, although this is done in different ways. 

A humidity correction for NO is included in the conversion of laboratory test results to 

emission factors, but not in the RSD calculations.  

There is a clear difference in temporal and spatial resolution of the measurements (half a 

second versus a drive cycle test phase). 

 

 4. Different levels of detail in the on-road fleet mix 

Remote sensing provides both detailed emissions and vehicle information for the majority 

of vehicles it measures. This is in contrast with emission models such as VEPM where 

emission factors are available for specific vehicle classes only.  

As a consequence, the remote sensing data needs to be aggregated to develop emission 

factors that correspond to the VEPM vehicle classification, before a comparison can be 

made. 

The representativeness of the RSD sites needs to be examined and confirmed. In other 

words the combined set of RSD locations cannot automatically be assumed to be 

representative of the overall fleet composition, or even particular segments of it, 

excluding trucks with e.g. vertical exhausts, and the wide range of driving conditions 

encountered in the real-world. 

  

  



 

84 The use of remote sensing to enhance motor vehicle emission modelling in New Zealand 

 

 5. Different spatial and temporal resolution regarding driving conditions 

It is not possible to directly compare VEPM emission factors (g/ km) that are derived from 

measurements over various drive cycles with remote sensing data collected at fixed 

roadside locations. Remote sensing techniques measure concentrations and 

(approximately) associated driving conditions at a particular point on the road 

(generally under slight acceleration) at a high frequency for about half a second, 

whereas drive cycles used in laboratory testing typically reflect 10 to 30 minutes of 

continuous driving over a range of driving conditions (effectively a ‘journey’). 

A proper comparison of remote sensing and VEPM predictions requires a method to 

account for the difference in spatial and temporal resolution. To make the two data 

sets (more) comparable, variables are required that quantify ‘driving conditions’ and 

link the two independent databases. Two candidate variables were examined in this 

study: ‘vehicle-specific power’ (VSP) or vehicle speed and acceleration. 

A statistical analysis on a subset of modal laboratory emissions data suggests that three 

classification methods, i.e. 6 VSP bins, 14 VSP bins and 176 speed-acceleration (v-a) 

bins, are not significantly different (p > 0.05), when the inherent variability in the 

emissions data is considered. This means that the simplest method (6 bin VSP) could 

be used. The detailed v-a approach does not provide significant accuracy benefits and 

generates specific issues such as exclusion of road gradient and vehicle mass as 

prediction variables. 

Although VSP is the best approach to quantify driving conditions at RSD locations, 

unresolved issues remain, including incomplete quantification of driving behaviour 

(e.g. gear shifting, driving history), variable time-alignment errors and errors in 

measured acceleration levels (i.e. a significant number of noisy and unrealistic 

acceleration values). These issues cannot be addressed or resolved, but they add 

uncertainty to the quantification of driving conditions at the time of measurement. 

VEPM is based on emission testing studies using chassis or engine dynamometers. Although 

these tests generally use high quality equipment and are conducted under highly 

controlled conditions, there are challenges remain to produce emission results that are 

representative for real-world driving conditions. Issues for consideration are, for 

instance, the use of real-world drive cycles and how well they represent New Zealand 

driving behaviour, exclusion of factors such as road gradient and air conditioning use 

and the quality of the dynamometer and dynamometer settings. Given that VEPM is 

based on overseas models, which in turn are based on a variety of overseas vehicle 

test programs and drive cycles, this information cannot readily be retrieved and 

verified. 
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 6. Different meteorological (test) conditions 

Meteorological variables such as ambient temperature, air density and humidity have a 

direct impact on vehicle emissions. In addition, these variables affect air-conditioning 

use, which affects emissions because air-conditioning requires a significant amount of 

energy. 

Laboratory tests are typically conducted at specific temperatures and humidity. RSD 

measurements reflect actual ambient temperatures and humidity. As a consequence, 

temperature correction needs to be applied to either VEPM predictions or remote 

sensing data. 

Air-conditioning is normally not incorporated in laboratory vehicle emission testing. VEPM 

has no air-conditioning correction factors, but air-conditioning impacts will be 

reflected in the RSD results. So a correction of either the VEPM or RSD results is 

recommended, but the feasibility of this is unclear as it requires accurate information 

regarding the penetration of air conditioners in the on-road fleet and its actual use. 

  

 7. Different fuel quality 

The composition and quality of fuel has a significant impact on emissions. 

 VEPM is to a large extent based on overseas models, and therefore reflects the quality and 

composition of the fuel used in overseas testing programmes, at the time of 

measurement. The RSD data will reflect the local NZ fuel quality and composition, and 

will be more accurate in this respect.  

VEPM emission predictions need to be corrected for commercial NZ fuels, to the extent 

that this is possible, if this has not already been done in the development of VEPM. 

 

 8. Different impact of ageing effects 

Even with reasonable maintenance, vehicle emissions increase with mileage and age due to 

deterioration of engine and emission-control components. Emission deterioration is 

intrinsically related to the durability of emission control devices (including OBD), in-

service I/M programs, driving conditions and driving behaviour.  

The remote sensing data reflect snapshots in time. Fleet-wide ageing effects can be 

captured by relating RSD emissions to vehicle model year and by conducting remote 

sensing campaigns in subsequent years and, ideally, multiple sites. 

Laboratory based VEPM predictions are ‘fixed’ and reflect the ageing effects at the time of 

measurements only. Ageing effects are normally simulated in emission models by 

generic mileage correction algorithms, which are based on limited data. Recent 

research indicates that the accuracy of those algorithms in vehicle emission models is 

low and requires attention.  
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 9. Different impact of vehicle loading 

Vehicle load can have a significant impact on vehicle emissions.  

Actual vehicle loading is not measured with the RSD, although a few studies reported the 

use of a weighing station before remote sensing measurements were carried out. 

Vehicle loading is recorded during laboratory testing, but the extent to which dynamometer 

loading corresponds to real-world driving is unclear. 

There appears to be no practical way to include ‘vehicle loading’ into the validation study 

due to a lack of information in this respect.  

The lack of vehicle weight information appears to be less of an issue for the actual remote 

sensing measurements. This is because the pollutant-to-CO2 ratios are less sensitive to 

vehicle loading. 

Vehicle emission models are often used beyond their intended purposes and capabilities, resulting in 

errors. This may partly be explained by lack of understanding of the model development process, the 

underlying empirical data and the exact definition of variables used by the model, and clear 

documentation of these matters.  

VEPM’s intended use is for emission estimation at road network level. The use of ‘average speed’ as 

the only variable to capture the impact of driving conditions on emission levels can introduce 

significant errors in the emission predictions with the same mean speed, but with different levels of 

speed fluctuation (i.e. different drive cycles or driving patterns). For local assessments (e.g. street 

level) substantial errors up to factor of four in emission predictions have been reported for speed-

time traces with the same mean speed but with different levels of speed fluctuation.  

More detailed vehicle emission models in addition to VEPM will be needed in the future for adequate 

emission predictions at the local level in New Zealand. This study has developed and presented a 

possible approach to develop such a model, using remote sensing data. A proof-of-concept hybrid 

model was created to illustrate how the rich New Zealand remote sensing database can be used to 

develop a genuine New Zealand emissions model, which can be used to ‘validate’ VEPM, but also 

allows for emission predictions at a significantly higher resolution in space and time than VEPM.  

The hybrid model links binned remote sensing data with CO2 prediction algorithms through an 

appropriate vehicle classification scheme and use of a proxy variable for engine power (VSP).  

A New Zealand hybrid model will provide an alternative and independent method to predict vehicle 

emissions in New Zealand, and predictions can be directly compared with VEPM, as a ‘validation’ 

exercise. Any differences between the models will provide policy makers with information regarding 

the possible range of air quality impacts due to motor vehicles. If predictions by the two model turn 

out to be quite similar, then this this will increase confidence in vehicle emission predictions and 

scenario modelling for the New Zealand fleet. 
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Appendix A Remote sensing validation studies 
Reference Country Site 

Description 
No. 
of 

Sites 

Specific 
Assumptions 

Equipment  Time 
Period 

Pollutants 
Measured 

Sample 
size 

Model 
Validation 

Comparison 
Variable 

Comments Model 

Sjodin et al 
1997 

Sweden Main Road, 
straight, slight 
inclination, 70 
km/h speed limit, 
constant cruise 
speed at 45 
km/h 

1 Cold start not relevant 
due to location of site 

RSD 1000, 
pressure-
induction tubes 
(10 m apart) for 
speed and 
acceleration 

8 
weekdays 

CO, HC, CO2 8,470 valid 
readings 

- - - 

Pokharel et 
al, 2002 

USA Denver area 8 Start and Evap 
Omitted 

FEAT - CO, HC, NO - MOBILE 6 gram pollutant / 
kg of fuel 

This study compares fuel-based and travel model 
based estimates, but leaves out start and evaporative 
emissions 

Ekström et al, 
2004 

Sweden One-way 
streets, slightly 
uphill 

3 Cold start not relevant 
due to location of site, 
NO equals NOx 

AccuScan RSD 
3000 

Several 
months 

CO, HC, NOx ~ 20,000 valid 
readings 

COPERT 3 gram pollutant / 
kg of fuel 

Presumably “Hot Running” only (not specified in 
paper), for COPERT3 average speed is equivalent to 
average speed RSD for each location, for 
ARTEMIS/HBEFA assumptions made on applicable 
traffic situation 

Bluett and 
Fisher, 2004; 

2005 

New 
Zealand 

Auckland 16 - FEAT 2003 CO, HC, NOx, 
particles 

~ 35,000 
vehicles 

NZ Transport 
Emission Rate 
database 

g/km Fuel consumption estimates based on Australian fuel 
consumption guide (2004 paper) or NZTER data 
(2005 paper) 

Kuhns et al, 
2004 

USA Variable, speeds 
ranging from 44-
72 km/h, road 
grade ranging 
from -0.7 to +3.7 
degrees 

10  LIDAR (PM), 
VERSS (RSD 
3000), laser 
beams for speed 
and acceleration, 
video camera for 
license plate 
records 

~ month CO, HC, CO2, 
NO, PM 

~ 60,000 
vehicles 

MOBILE6 and 
PART5 

gram pollutant / 
kg of fuel 

Hot running only, (evaporative and start emissions 
excluded), fleet composition based on registered 
census data, selection of one traffic situation 
“Freeway at  64 km/h” as being closest to average 
speed in RSD database, conversion of g/VKT to g/kg 
fuel using fuel economy factors 

Mazzoleni et 
al., 2004b 

USA Single lane sites 
in Las Vegas 
metropolitan 
areas 

5 Start, Non-Exhaust 
and Evap Omitted 

DRI VERSS 24 days CO, HC, NO, 
PM 

40,245/15,220 
valid 
measurements 
for CO/HC/NO 
and PM 
respectively 

PART5 gram pollutant / 
kg of fuel 

Hot running only, non-exhaust PM and evaporative 
not considered. 

Guo et al, 
2007 

China Variable, speeds 
ranging from 8-
95 km/h, road 
grade ranging 
from 0 to +2.2 
degrees 

5 Cold start negligible INSPECTOR 
IV, 3 laser beams 
for speed and 
acceleration, 
video camera for 
license plate 
records, 
measurement of 
meteorology 

1-2 
months 

CO, HC, CO2, 
NO 

~ 47,000 valid 
readings 

IVE ton/year Fuel-based emission inventory with remote sensing 
compared with VKT based emission inventory with 
IVE 

NIWA, 2008b Australia Various 
locations in 

15 - RSD 4000 May 2006 
– April 

CO, HC, CO2, 
NO, smoke 

~53,000 
vehicles 

Various g/km - 
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three major 
cities 

2007 

Sjödin and 
Jerksjö, 2008 

Sweden Variable, city 
and freeway with 
speed limits of 
30 or 70 km/h, 
average speeds 
ranging from 29-
58 km/h 

4 Cold start negligible FEAT  NO, NO2, NOx,  
HC, CO2, NH3,  

15,590 
vehicles 

COPERT 4, 
HBEFA 2.1, 
ARTEMIS 
0.4d 

gram pollutant / 
kg of fuel 

Presumably “Hot Running” only (not specified in 
paper), for COPERT4 average speed is equivalent to 
average speed RSD for each location, for 
ARTEMIS/HBEFA assumptions made on applicable 
traffic situation 

Smit and 
Bluett, 2011 

Australia High capacity 
urban roads 

5 Humidity and ambient 
temperature not 
considered 

- - CO, HC, NOx ~ 10,000 valid 
readings 

Laboratory 
NISE2 

gram pollutant / 
kg of fuel 

- 

Carslaw et 
al., 2011a 

UK Various - - FEAT - CO, HC, NOx 72,000 valid 
readings 

COPERT4, 
HBEFA 3.1 

g/km  “Hot Running” only, for COPERT4 average speed is 
equivalent to average speed RSD for each location, 
for ARTEMIS/HBEFA assumptions made on 
applicable traffic situation 

Carslaw et 
al., 2011b 

UK Typical urban 
conditions 

- - AccuScan RSD-
4600 

2007-2010 NO, (NO2 
estimated)  

- UK NAEI, 
HBEFA 3.1 

g/km Results only presented for NOx. 

Beevers et 
al., 2012 

UK Single lane road 
with 30-50 km/h 
speed 

1 Cold start emissions 
assumed to be zero 

RSD4600 2007-2010 NO, (NO2 
estimated)  

74,614 
vehicles 
sampled 

HBEFA, UK 
NAEI 

Total emissions Results only presented for NOx. 

Fujita et al., 
2012 

USA Road leading to 
tunnel 

1 Cold start emissions 
assumed to be zero 

- 2010 (one 
week) 

CO, NOx, THC 13,000 
measurements 

MOVES, 
MOBILE, 
EMFAC 

gram pollutant / 
kg of fuel 

RSD data only measured for LDVs so weekend 
results were used with lower proportions of HDVs in 
the tunnel 

Kraan et al., 
2012 

Netherlands Typical urban 
roads 

5 - - - NO 1,950 valid 
readings 

VERSIT+ g/km  Results only presented for NO. 

Li and Chu, 
2013 

China Typical urban 
roads, uphill 
gradient of 0-2º, 
average speed 
of 10-18 km/h 

5 - RSD3000 April 2011 
– April 
2012 

CO, HC, CO2, 
NOx 

8,537 valid 
readings 

IVE g/l  - 

Chen and 
Borken-

Kleefeld., 
2014 

Switzerland AADT of 5000 
vehicles, uphill 
gradient of 9º, 
average speed 
of 45 km/h 

1 Cold start emissions 
assumed to be zero 

- 2000-2012 NO (NO2 
estimated)  

128,000 valid 
readings 

PHEM, 
HBEFA 

gram pollutant / 
kg of fuel 

NO2 not measured but estimated to compute NOx 
emissions. 
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Appendix B Difference in v-a and VSP approach 

Table 9-1: Mean differences in CO/CO2 emission ratios between the v-a and VSP6 bin methods for each 
speed-acceleration bin.  

 

Table 9-2: Mean differences in HC/CO2 emission ratios between the v-a and VSP6 bin methods for each 
speed-acceleration bin.  

 

Table 9-3: Mean differences in NOx/CO2 emission ratios between the v-a and VSP6 bin methods for each 
speed-acceleration bin.  
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70-80 NA NA NA NA NA 6% 25% 54% 56% 47% 9% NA NA NA NA NA

60-70 NA NA NA NA NA 35% 14% 42% 52% 54% 14% NA NA NA NA NA

50-60 NA NA NA NA -37% -3% 3% 12% 3% 12% -7% 37% NA NA NA NA

40-50 NA NA NA -16% -13% 0% -5% 0% 6% 2% -2% -6% -10% NA NA NA

30-40 NA NA NA -2% -19% 2% -4% -16% -29% -20% -7% -11% -20% NA NA NA

20-30 NA NA NA 16% 22% 1% -1% -12% -30% -23% -30% -45% -29% 10% NA NA

10-20 NA NA NA 20% 18% -10% -19% -38% -56% -52% -55% -47% -41% -60% NA NA

0-10 NA NA NA 39% 11% 4% 10% 2% -4% -8% -9% -26% -36% 27% NA NA
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90-100 NA NA NA NA NA NA -57% -37% -38% -22% NA NA NA NA NA NA

80-90 NA NA NA NA NA -61% -50% -17% -14% -17% 12% NA NA NA NA NA

70-80 NA NA NA NA NA -55% -44% -18% 25% 21% 50% NA NA NA NA NA

60-70 NA NA NA NA NA -44% -36% -20% 10% 10% 12% NA NA NA NA NA

50-60 NA NA NA NA -59% -26% -26% -37% -16% 12% 5% -8% NA NA NA NA

40-50 NA NA NA -22% -22% -4% -11% -20% -31% 1% 2% 0% -8% NA NA NA

30-40 NA NA NA 89% -4% 0% 16% -15% -37% -5% 20% 4% -22% NA NA NA

20-30 NA NA NA 80% 69% 59% 41% 11% -24% 3% 9% -12% -8% 72% NA NA

10-20 NA NA NA 124% 97% 109% 59% 16% -23% 13% 88% 94% 223% 614% NA NA

0-10 NA NA NA 138% 99% 111% 154% 58% -2% 96% 42% 45% 405% 1505% NA NA
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Appendix C Steps in data processing R script 
The scripts can be found in the file ARC11504_data_sets_V2.r and sequentially: 

1. Read the tables in the Access database into R 
2. Create a ‘Vehicles’ dataframe based on a desired subset of valid data 

 Convert odometer readings in miles to kilometres 

 Remove invalid records where: 
o Number plate is “NA” 
o Weight is below700kg (and above 3 500 if looking at LDVs) 
o Engine capacity is below 500cc and above 10 000cc 

 Consolidate gender of owner 

 Consolidate fuel types down to “Petrol”, “Diesel”, “Other” 

 Bin year of manufacturer 

 Create Vehicle age based on date of record and year of manufacturer: bin results. 

 Bin Odometer readings 

 Relabel “NA” in previous country of registration as “NZL”: Consolidate to “NZN”, “JPN”, 
“Other” 

 Determine test regime for Japanese Vehicles where it was not supplied 

 Tidy up test regime for NZ vehicles 

 Check for duplicate records and set them to “NA” 

 Write a text file of resulting QA’d vehicles if required 
3. Create an ‘Emissions’ dataframe 

 Check emissions have a valid plate number 

 Check 2005-2011 data have valid flags for CO, CO2, HC and NO 

 Check 2005-2011 data have valid flags for speed and acceleration 

 Check 2003 data have valid flags for CO, CO2, HC and NO. For the sites MAN1 and MAN2 
keep records flagged as invalid for NO, as it was not recorded at these sites. 

 Merge emissions data with emissions logs to obtain site details  
4. Merge vehicles and emissions data frames 
5. Add variable to record differences between emissions date and odometer date 
6. Check for and eliminate duplicate vehicles by choosing the reading closest to the odometer 

date 
7. Add speed and acceleration  
8. Add VSP and only keep records for where VSP is between 0 and 40: bin 
9. Remove extreme outliers for HC > 30 000, NO > 9 000 and uvSmoke < -5  & > 5 
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