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Abstract: This research conducted a probabilistic life-cycle assessment (pLCA) into the greenhouse
gas (GHG) emissions performance of nine combinations of truck size and powertrain technology
for a recent past and a future (largely decarbonised) situation in Australia. This study finds that the
relative and absolute life-cycle GHG emissions performance strongly depends on the vehicle class,
powertrain and year of assessment. Life-cycle emission factor distributions vary substantially in
their magnitude, range and shape. Diesel trucks had lower life-cycle GHG emissions in 2019 than
electric trucks (battery, hydrogen fuel cell), mainly due to the high carbon-emission intensity of the
Australian electricity grid (mainly coal) and hydrogen production (mainly through steam–methane
reforming). The picture is, however, very different for a more decarbonised situation, where battery
electric trucks, in particular, provide deep reductions (about 75–85%) in life-cycle GHG emissions.
Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about 50–70%), but not as
deep as those for battery electric trucks. Moreover, hydrogen trucks exhibit the largest uncertainty
in emissions performance, which reflects the uncertainty and general lack of information for this
technology. They therefore carry an elevated risk of not achieving the expected emission reductions.
Battery electric trucks show the smallest (absolute) uncertainty, which suggests that these trucks
are expected to deliver the deepest and most robust emission reductions. Operational emissions
(on-road driving and vehicle maintenance combined) dominate life-cycle emissions for all vehicle
classes. Vehicle manufacturing and upstream emissions make a relatively small contribution to
life-cycle emissions from diesel trucks (<5% each), but these are important aspects for electric trucks
(5% to 30%).

Keywords: truck; HDV; freight; greenhouse gas emissions; GHG; battery electric; fuel cell; hydrogen;
carbon footprint; life cycle; LCA; probabilistic; BEV; ICEV; FCEV

1. Introduction

Road transport contributes significantly to total greenhouse gas emissions, and this
contribution is growing. In Australia, the contribution is currently 16% [1], but in the
EU, it is already the largest source, contributing 30% to total greenhouse gas (GHG) emis-
sions [2]. Unlike the other sectors, the transport sector proves particularly resistant to
decoupling from economic growth [3], which is why addressing its relatively poor GHG
emissions performance needs to be given special priority. Despite their small share of total
stravel, heavy-duty vehicles are typically responsible for about 25% of total road transport
emissions, and their relative contribution is growing [2,4,5].
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1.1. Life-Cycle Analysis

It is increasingly accepted that life-cycle assessment (LCA) is required for the adequate
estimation of GHG emissions from road transport, which is currently shifting from fossil-
fuelled to electric and hydrogen-powered transport [1]. LCA can examine different types
of environmental impacts [6,7]. LCA quantifies the environmental impacts of a product’s
manufacture, operational use and end of life using holistic system boundaries [8–10].

LCA studies are often restricted in scope given the complexity and resources required
to conduct this type of study (it is noted that some ISO standards have flexible definitions
in relation to global warming impacts e.g., [9–11]). A particular challenge is that LCA
quantifies impacts for a system that is intrinsically complex, location-specific and that
varies in time and over time (trends). In addition, LCA often deals with incomplete
information due to data gaps, restricted access and confidentiality issues.

As a consequence, it is critical that the uncertainty in the study results is quantified,
and that these results are regularly updated, refined, expanded and improved [12–14].
Despite certain limitations regarding its accuracy, LCA appears to be the best way to
make informed decisions regarding cost-effective GHG emissions reductions e.g., [15].
Probabilistic LCA (pLCA) is a particularly cost-effective, powerful and flexible approach to
LCA. pLCA is designed to focus on available data and to use expert judgement to address
gaps (e.g., [16]). Moreover, it aims to rapidly absorb continuous improvements in input
data and new information, thereby generally reducing the uncertainty in the updated
study results.

1.2. Background and Purpose of This Study

This paper extends a previous probabilistic LCA (pLCA) study into the GHG emissions
performance of Australian passenger vehicles [17] to Australian freight vehicles (trucks).
A more detailed introduction and discussion of LCA studies is provided in Smit and
Kennedy [17] and will not be repeated here. A number of inputs from this previous
study [17] will be re-used in this paper. Where this is the case, reference is made to the
previous publication.

Compared with passenger vehicles, a life-cycle assessment for trucks is more chal-
lenging due to the wide range of possible vehicle configurations and associated vehicle
uses, as well as the generally larger gaps in available data and information. In this respect,
the application of a probabilistic life-cycle method is particularly useful, since it explicitly
considers and reflects this increased variability and uncertainty in the final life-cycle results.

This study will examine the life-cycle GHG emissions performance of three truck sizes,
three powertrains (internal combustion engine, battery electric and hydrogen fuel cell)
and for a recent past and a future (largely decarbonised) situation. Wherever possible,
quantitative data will be used, either of empirical origin or from reliable and proven
software packages, supplemented with information from relevant scientific literature. In
the absence of quantitative data, expert judgement will be exercised.

A range of fundamental and relevant input variables will be considered, including
(but not limited to) vehicle lifetime, accumulated mileage, size and durability of battery and
fuel-cell systems; emission intensities of electricity generation and hydrogen production;
battery charging losses; hydrogen distribution losses and energy requirements of on-road
driving. Interdependencies between variables will be accounted for in the calculations. For
instance, the impact of variable vehicle (tare) mass on operational emissions is modelled
in the simulation with correction functions. Future improvements (and their associated
uncertainty) will be discussed and explicitly modelled.

The focus is on freight vehicles in the Australian on-road fleet, which have a few
unique characteristics such as lifetime mileage compared with other major jurisdictions, as
will be discussed later. There are a few additional differences with other LCA studies. For
instance, this study is more comprehensive than studies that have not included upstream
impacts e.g., [18], and it focuses on future fuels (electricity, hydrogen) rather than alternative
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fossil fuels such as natural gas e.g., [19]. A comparison will be made with international
studies [20] in Section 4.3.

2. Materials and Methods
2.1. Probabilistic LCA (pLCA)

A probabilistic LCA (pLCA) approach quantifies uncertainty and variability in model
outputs and estimates non-linear interactions [21]. The method provides an estimate of
robustness and provides insight into which LCA aspects are the most uncertain and could
benefit most from further research e.g., [16]. This assists with the cost-effective use of
available resources to further improve, refine and expand the LCA results. Figure 1 shows
a flow diagram that visualises the pLCA approach used in this study.
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Figure 1. Flow diagram showing the method and steps followed in the probabilistic LCA (pLCA)
process applied in this study.

The process starts with a mathematical formulation of the life-cycle assessment model;
in this study, the response variable Y quantifies the greenhouse gas emissions performance
(Section 2.2), and the predictor variables X1, X2, . . ., Xn (Section 2.3) collectively explain and
quantify the magnitude of and the variability and uncertainty in the response variable. In
the analysis phase, a range of methods are used to define the input distributions for each
predictor variable, where the choice of method(s) is guided by the available information
and data (Sections 2.3 and 3). The probabilistic definition of input variables is based on
the statistical analysis of empirical data, software simulation, results from peer-reviewed
scientific studies or expert judgement wherever available and in this order of preference.

In a Monte Carlo simulation (Section 2.3), random samples are taken from input
distributions (typically a hundred thousand to a million times) and propagated through the
LCA model to create probability output distributions. This way, it is not only the expected
values that are estimated, but also the associated variability and uncertainty. The process is
a mathematical analogue of an experiment, which is repeated many times to provide an
accurate description of the variability and uncertainty in the output estimate Y. The final
step is then an analysis of the output data and its comparison with other studies (Section 4).
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2.2. Model Definition

The assessment variable, or functional unit, in this study is the life-cycle greenhouse
gas (GHG) emission factor. This factor standardises the environmental impact, specifically
expressed as the quantity of GHG emissions per kilometre driven by a vehicle, denoted
as CO2-e/vehicle.km. The computation of carbon dioxide equivalent (CO2-e) emissions
involves multiplying the emissions of a particular greenhouse gas by its global-warming
potential (GWP) and aggregating these emissions.

All pertinent aspects of GHG emissions throughout the vehicle’s life cycle are taken
into account, including: (1) production of the vehicle (manufacturing of non-battery compo-
nents and manufacturing of the battery and fuel-cell system); (2) production of (fossil) fuels
for internal combustion engine vehicles (ICEVs) (extraction, transport and fuel refining);
(3) production of electricity for battery electric vehicles (BEVs) (extraction and transport
of fossil fuels, electricity generation, electricity distribution losses and power-generation
infrastructure); (4) production of hydrogen for fuel-cell electric vehicles (FCEVs) (extraction
and transport of fossil fuels, hydrogen production, compression, distribution, refuelling
losses and leakage); (5) on-road operation of the vehicle (ICEV fossil-fuel use, BEV energy
use, BEV battery charging losses, FCEV hydrogen use and leakage losses and vehicle
maintenance); and (6) disposal and recycling of the vehicle at the end of its life.

For clarity and readability of the paper, two different aspects of the “production of en-
ergy and fuels” are allocated to different LCA aspects, depending on the vehicle technology.
For ICEVs, the production of fossil fuels (extraction, transport, fuel refining and distribu-
tion) is reflected in the upstream LCA aspect. For BEVs, the emission intensity of electricity
generation is included in the on-road operation aspect (indirect energy use), whereas the
energy input for electricity generation (extraction and transport of fossil fuels and use
of renewables) is incorporated into the upstream LCA aspect. For FCEVs, the emission
intensity of hydrogen production and distribution (indirect energy use) is included in the
on-road operation aspect, whereas the energy input for hydrogen production (extraction
and transport of natural gas and water) is incorporated into the upstream LCA aspect.

The life-cycle GHG emission factors, eICEV, eBEV and eFCEV, are computed using
three basic additive models and sub-models (if applicable), as shown in Table 1. In
Equations (1)–(3), ei,j is used to represent a GHG emission factor (CO2-e/km) for a life-cycle
aspect i and vehicle type j. This research focuses on assessing the fleet’s average impact.
Therefore, fleet-averaged input data are generally used, such as mean vehicle mass and
the associated probability distribution of this mean value. While the pLCA method can
be employed for individual vehicles if desired, this falls outside the scope of this study.
Such an analysis would require the utilization of vehicle-specific input data instead of the
aggregated data used for fleet averages.

Table 1. pLCA model structure and definition.

Notation Description and Units Time
Variable

Mx lifetime mileage for technology x (x = ICEV, BEV, FCEV) (km) No (S.3.1)

ΓBAT battery replacement factor (−) Yes (S.3.1)

ΓFCL fuel-cell replacement factor (−) Yes (S.3.1)

Mx vehicle tare mass for technology x (x = ICEV, BEV, FCEV) (kg) No (S.3.2)

MBAT battery mass for BEV or FCEV (kg) No (S.3.2)

MFCL fuel-cell mass (kg) No (S.3.2)

θBAT battery capacity (kWh) Yes (S.3.2)

ρFCL fuel-cell rated power (kW) Yes (S.3.2)
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Table 1. Cont.

Notation Description and Units Time
Variable

ωelec
(1) GHG emission-intensity electricity generation (g CO2-e/kWh generated) Yes (S.3.3)

ηb battery recharging efficiency (−) Yes (S.3.3)

ηg grid transmission efficiency (−) Yes (S.3.3)

ωH2,P GHG emission-intensity hydrogen production (g CO2-e/g fuel) for production pathway P Yes (S.3.4)

σelec GHG emission-intensity electricity infrastructure (g CO2-e/kWh generated) Yes (S.3.5)

ηh hydrogen distribution efficiency (−) Yes (S.3.4)

ηr hydrogen refuelling efficiency (−) Yes (S.3.4)

σH2,P GHG emission-intensity H2 production infrastructure (g CO2-e/g fuel) production pathway P Yes (S.3.5)

ϕelec
(2) GHG emission-intensity upstream fuels for electricity generation (g CO2-e/kWh consumed) Yes (S.3.5)

ϕH2,p
(2) GHG emission-intensity upstream H2 production (g CO2-e/g fuel) for production pathway P Yes (S.3.5)

φv,ICEV GHG emission-intensity ICEV production (kg CO2-e/kg vehicle) Yes (S.3.6)

φv,BEV GHG emission-intensity BEV production without battery (kg CO2-e/kg vehicle) Yes (S.3.6)

φv,FCEV GHG emission-intensity FCEV production without battery/fuel cell (kg CO2-e/kg vehicle) Yes (S.3.6)

φBAT GHG emission-intensity battery production (kg CO2-e/kWh battery capacity) Yes (S.3.6)

φFCL GHG emission-intensity fuel-cell production (kg CO2-e/kW fuel-cell-rated power) Yes (S.3.6)

ε real-world electricity consumption BEV (kWh/km) Yes (S.3.7)

H real-world hydrogen consumption FCEV (g/km) Yes (S.3.7)
(1) Direct emissions due to the activity; (2) Indirect emissions from upstream activities (extraction, production, etc.).

2.3. Developing Input Distributions

The model variables in Equations (1)–(3) are defined as parametric distributions, which
represent the probabilities of all possible values in the sample space [21]. A probability
model is mathematically defined as a probability distribution in the form of either a proba-
bility density function (PDF) or cumulative distribution function (CDF) with associated
parameters (minimum, maximum, scale, shape, etc.).

Whenever possible, quantitative data were employed to construct input distributions,
complemented by information sourced from the existing scientific literature. Quantitative
data encompassed empirical data, reported findings in the scientific literature, or output
from relevant vehicle emissions software. Various statistical techniques, including Monte
Carlo simulation, bootstrap analysis, and parametric distribution fitting, were employed in
the development of these input distributions.

In cases where empirical input data were accessible for aspects of the life-cycle as-
sessment (LCA), the data were either directly utilized as sampling distributions or were
transformed into sampling distributions through bootstrap analyses. The statistical boot-
strap technique [22] was employed to generate resampled input distributions for a targeted
statistic, such as the mean or median. This simulation method approximates an asymp-
totically accurate sampling distribution by iteratively resampling with replacement from
the original data and calculating the desired statistic [23]. Standard errors and confidence
intervals were derived from these (non-symmetric) distributions. The boot R package, as
developed by Ripley [24], was employed to execute the bootstrap analysis.
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eICEV = evehicle,ICEV + einfra,ICEV + efuel,ICEV + eroad,ICEV + edisposal,ICEV (1)
evehicle,ICEV = wICEV φv,ICEV/MICEV
eBEV = evehicle,BEV + einfra,BEV + efuel,BEV + eroad,BEV + edisposal,BEV (2)
evehicle,BEV = ((MBEV − MBAT) φv,BEV + (ΓBAT φBAT θBAT))/MBEV
einfra,BEV = ε σelec/(ηg ηb)
efuel,BEV = ε ϕelec/ηb
eroad,BEV = ε ωelec/(ηg ηb)
eFCEV = evehicle,FCEV + einfra, FCEV + efuel,FCEV + eroad,FCEV + edisposal, FCEV (3)
evehicle,FCEV = ((MFCEV − MBAT − MFCL) φv,FCEV + (ΓBAT φBAT θBAT) + (ΓFCL φFCL
ρFCL))/MFCEV
einfra,FCEV = H σH2,p/ηh
efuel,FCEV = H ϕH2,p/ηh
eroad,FCEV = H ωH2,p/ηr

Truncated parametric distributions were fitted to the sampling distributions by max-
imum likelihood. The following candidates [25–27] were included: Uniform (U: a, b),
Triangular (T: a, b, c), Normal (N: m, s), Lognormal (L: m, s), Weibull (W: s, s), Gamma
(G: s, r), Exponential (E: s), non-standard beta distribution (B: s, s), the location-scale t-
distribution (O: m, s, df) and the skew t-distribution (S: m, s, a, df). The Dirac Delta function
(D: m) was used to describe a constant value. Appendix A provides further information for
the distributions. The “truncdist” R package [28] was deployed to apply truncations to the
fitted distributions (setting a lower limit (a) and an upper limit (b)). The plausible range in
the input data is defined as the 99.7% confidence interval (equivalent to ±3 SD in a normal
distribution), which prevents the use of unrealistic values in the pLCA. In the optimised
fitting process, the R packages “fitdistr” and “fitdistrplus” [29], “extraDistr” [26], “sn” [30]
and “truncdist” were used.

The identification of the most suitable theoretical distribution involved a comprehen-
sive comparison of all the fitted parametric distributions with the input values from the
sampling data. This evaluation was conducted visually using quantile–quantile (QQ) plots
for all the fitted distributions and by employing the Cramer–Von Mises test [31], a statistical
method for assessing the goodness-of-fit. QQ plots, a graphical tool, enable the comparison
of quantiles between two probability distributions.

In instances where there were insufficient quantitative input data for certain model
aspects, two simplified distributions [25] were utilised, and parameters were estimated
based on a literature review. The uniform (rectangular) distribution, defined by a lower
limit (a) and an upper limit (b) within a plausible range (U: a, b), signifies equal probability
between these endpoints. This distribution is suitable when information is only available
for the lower and upper limit values [32]. The triangular probability distribution (T: a, b,
c) is continuous and characterized by a lower limit (a), an upper limit (b), and the most
plausible estimate (c). It is appropriate for situations where the exact form of a distribution
is uncertain, but values toward the middle of the range are deemed more likely than those
near the extremes [33]. The triangular probability distribution can be asymmetrical.

Following the definition of input distributions, Monte Carlo simulation [34] was
employed in two distinct ways. First, it combined various sampling distributions to
generate an output sampling distribution for a specific life-cycle aspect and vehicle type,
such as the GHG emission factor or tare mass. Second, Monte Carlo simulation was
utilized to propagate the uncertainty and variability inherent in the parametric input
distributions to the model outputs (eICEV, eBEV and eFCEV). The resulting probability density
functions (PDFs) not only indicate central tendencies, but also capture the variability and
uncertainty in the output variables arising from variations in the input variables. The
uncertainty in the outputs is defined as a 99.7% confidence interval (CI) of the mean
value, presented either as a value range (asymmetric confidence interval) or a percentage
(symmetric confidence interval).
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2.4. Scenario Definitions and Heavy-Duty Vehicle Classification

In terms of vehicle classification, three powertrain (ICEV, BEV, FCEV) and three mass
classes are distinguished for Australian trucks using gross vehicle mass (GVM), in line with
the classification used in the Australian vehicle emissions software COPERT Australia and
n0vem [1]:

1. Medium commercial (rigid) vehicles (MCV); GVM 3.5–12.0 t;
2. Heavy commercial (rigid) vehicles (HCV); GVM 12.0–25.0 t;
3. Articulated trucks (AT), gross vehicle mass; GVM > 25.0 t.

Relevant vehicle specifications for these vehicles are shown in Table 2. Note that the
payload is kept constant within each truck class. These payloads reflect average loads over
all laden and unladen trips for Australian trucks [35]. They reflect half-laden (ICE) trucks
(50% payload), with a slightly higher but variable vehicle mass for electric trucks due their
higher tare mass.

Table 2. Relevant vehicle specifications for representative Australian truck categories.

Vehicle Class Powertrain GVM *
(t)

Tare Mass **
(t)

Payload ***
(t)

Typical Rated
Power (kW)

Typical Battery
Capacity (kWh)

MCV ICEV 7.5 3.1 2.2 125 -
BEV 7.5 Variable 2.2 115 200

FCEV 7.5 Variable 2.2 140 60 (40 ****)

HCV ICEV 17.2 9.2 4.0 247 -
BEV 17.2 Variable 4.0 220 340

FCEV 17.2 Variable 4.0 200 80 (40 ****)

AT ICEV 90.0 24.3 32.9 510 -
BEV 90.0 Variable 32.9 394 600

FCEV 90.0 Variable 32.9 400 150 (80 ****)

* GVM = gross vehicle mass. ** Variable tare mass depends on size and mass of the battery and fuel-cell systems;
please note that for ICEVs, the mean values are shown here and that the variability of the ICEV tare mass is
discussed in Section 3.2. *** Payload reflects half-laden (ICE) trucks. **** Hydrogen tank size in kg.

The input variables presented in Table 1 are expected to vary over time. To capture this
time dependency, two scenarios are defined for Australia, using results from the previous
study [17], wherever possible, for consistency.

• The Recent Past Scenario (2019) reflects the Australian electricity mix and hydrogen pro-
duction pathways in 2019. A mix of two hydrogen production pathways were considered:
steam–methane reforming and green hydrogen production with electrolysis (Table 3).

• The Future Scenario (~2050) is a more decarbonised Australian scenario, loosely
allocated to the year 2050, which assumes the Australian electricity generation mix
and hydrogen-production pathways shown in Table 3. This assumption is in line and
consistent with a similar pLCA study for passenger vehicles [17]. It is noted, however,
that this scenario is not necessarily restricted to 2050. It would apply to any current
situation where renewable low-carbon energy is used for the different life-cycle aspects.
Examples are the use of solar panels to charge batteries or the use of grid electricity
that is currently generated in Tasmania with almost 95% renewables [17].

Table 3. Percentage of electricity and hydrogen generated by fuel type for each scenario.

Scenario, Jurisdictions Coal Gas Oil Nuclear Hydro Wind Biomass Solar

Electricity, Australia, Past (2019) 58.4% 20.0% 1.9% 0.0% 6.0% 6.7% 1.3% 5.6%
Electricity, Australia, Future (2050) 5.0% 5.0% 0.0% 0.0% 30.0% 25.0% 5.0% 30.0%

Hydrogen, Australia, Past (2019) - 75.0% * - - - 25.0% ** - -
Hydrogen, Australia, Future (2050) - 10.0% * - - - 90.0% ** - -

* steam–methane reforming; ** green hydrogen production with electrolysis.
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3. Input Distributions

This section provides a comprehensive description of the process involved in devel-
oping parametric input distributions for technology assessment, specifically focusing on
relevant vehicle parameters and various life-cycle aspects.

3.1. Lifetime Mileage and System Durability

Lifetime mileage is an important variable in the simulation. A statistical analysis was
conducted using age–mileage data from Australian emission test programs for rigid ICE
(n = 79) and articulated ICE trucks (n = 105). Various models were fitted to the data (linear,
linear log-transformed and non-linear least-squares) to estimate the average accumulated
mileage at twenty-five years of age and the associated 97.7% confidence interval of the
mean. The predicted lifetime mileage for rigid ICE trucks is approximately 500,000 km
(±20%) and approximately 2,000,000 km (±10%) for articulated ICE trucks. The associated
MICEV input distributions are therefore (N: 500,000; 33,000) truncated at 400,000 and 600,000
for MCVs and HCVs and (N: 2,000,000; 62,000) truncated at 1,800,000 and 2,200,000 for ATs.
These Australian values are different from those reported in other studies. For instance,
O’Connell et al. [2] assumed a lifetime mileage of 900,000 km for MCVs and 1,300,000 km
for ATs for the EU truck fleet.

Estimation of operational emissions requires the consideration of mean travel speeds
and activity shares in different operating conditions, such as urban and highway driving
(Section 3.7). The corresponding weighted average travel speeds for MCVs, HCVs and ATs
are 38 km/h, 38 km/h and 72 km/h [1]. These values are used to estimate the distributions
of total lifetime service-hours, which are (N: 13,250; 875) truncated at 10,500 and 16,000 h
for MCVs and HCVs and (N: 27,667; 858) truncated at 24,900 and 30,450 h for ATs.

The lifetime mileage and total service-hour distributions are assumed to be the same for
BEVs and FCEVs, which is reasonable for non-battery and non-fuel-cell vehicle components.
However, the durability impacts for batteries and fuel cells on the emission performance
need to be considered separately. They are reflected in the replacement factors (ΓBAT and
ΓFCL), which estimate how often these vehicle components need to be replaced over the
full lifetime of a truck. The replacement factor is a function of durability (hours) and HDV
lifetime mileage, which are both variable. In the simulation, values are rounded up to the
nearest integer. This means that values < 1 are set to unity, where a value of 1 means that
a battery or fuel-cell system is not replaced during a vehicle’s lifetime (i.e., the original
system is used). A value of two means that a battery or fuel-cell system is replaced once, a
value of three means a battery or fuel-cell system is replaced twice, and so forth.

Despite initial concerns regarding the durability of BEV batteries, research indicates
that these batteries retain more than 90% of their original capacity even after exceeding
200,000 km [7]. While this level of retention is generally sufficient for light-duty vehicles, it
may not meet the requirements for heavy-duty vehicles. For instance, O’Connell et al. [2]
assumed one battery replacement over the truck’s lifetime and an 8- to 10-year lifetime for
a battery. Lifetime is usually defined as reaching 70% to 80% of the initial battery capacity.
This means that the battery lifetime for practical applications can be higher if the required
usable SOC is lower for the intended truck applications [36].

The practical lifetime of a battery is highly dependent on the technical design and
the user profile, which complicates the LCA for trucks. In this study, it has been assumed
that truck batteries currently last between 400,000 km and 600,000 km (U: 400,000, 600,000),
which, on average, corresponds to a battery replacement of 0 to 1 time for an MCV and
a HCV and, with a proper technical design for articulated truck use, theoretically 3 to
5 times for an AT. Improved durability of battery technology is expected to double the
battery lifetime mileage (U: 800,000, 1,200,000), which, on average, corresponds to a battery
replacement of 0 times for an MCV and a HCV and 1 to 2 times for an AT.

It is, however, unlikely that more than three battery replacements in trucks will be
acceptable and feasible (it is too costly) in practice. Indeed, there appear to be at least three
different mechanisms that could extend battery durability in trucks:
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1. Alternative usage of the ageing truck (e.g., shifting to shorter-distance transport
missions) may allow for a lower SOC and, therefore, longer battery durability. This
may include the use of ageing trucks along freight corridors with a high density of
fast-charging stations and therefore more regular (fast) charging opportunities, or
different types of and shorter distance missions, both making a lower SOC acceptable.

2. The use of shared and externally charged batteries (battery swapping) in either OEM
or retrofitted long-distance truck operations may increase the battery durability (slow
charging) and may also allow for a lower SOC, although a larger number of batteries
(spare for charging) would be required in this setup, impacting life-cycle emissions.

3. The secondary use of truck batteries in non-transport applications, in which the
GHG emission impacts of battery production should at least partly be passed on to
the non-transport application. In this case, one to two battery replacements should
likely sufficiently account for the GHG emission impacts of battery production on
transport emissions.

Given the discussion above, the LCA simulation curtails the number of battery replace-
ments to a maximum value of 3, and it assumes that other mechanisms (alternative truck
use, battery swapping, secondary battery use) will generally allow for longer durability, if
the theoretical number of battery replacements exceeds 3 times.

The reliability and durability of fuel-cell technology is considered to be the most criti-
cal challenge for practical application and commercialisation in the HDV sector e.g., [37–40].
Fuel-cell technology comprises a complex system, including the fuel-cell stack (power
unit), auxiliary systems (e.g., compressors, humidifiers, sensors, controllers) and a hy-
drogen storage tank, as well as support batteries. This system is highly sensitive to the
operating environment, and complex HDV operating conditions, such as idling, dynamic
loads, startup (cold start) and shutdown, can significantly accelerate fuel-cell ageing [38].
Deterioration of the fuel-cell systems can also occur due to a range of other factors such as
contamination (e.g., platinum catalyst poisoning) by air pollutants, impurities in hydrogen
fuels and contaminants from the actual system [39].

The durability of the fuel-cell system has been assumed to be sufficient for light-duty
vehicles with a lifetime mileage of 150,000 or 10 years of operation, where the system
capacity is expected to deteriorate by no more than 15% [37]. However, it is clear that
further development is required for its application in high-mileage heavy-duty vehicles
to improve durability and efficiency [4]. There is some variability in the fuel-cell system
lifetime targets. Ren et al. [38] reported a target of 5000 h with a performance degradation
of 10% for 2020, which was considered challenging at the time, and an ultimate target for
in-use fuel-cell vehicles of 8000 h. Cullen et al. [4] reported substantially more ambitious
targets of 25,000 h for 2030 and 30,000 h for 2050. They also noted that fuel and battery
system lifetimes in fuel-cell buses in the USA showed an average lifetime of 13,236 h and
that a lifetime of 30,000 h had been exceeded.

In this study, it has therefore been assumed that fuel-cell systems currently can last
between 4000 and 14,000 h (U: 4000, 14,000), which, on average, corresponds to a fuel-cell
system replacement of 0 to 3 times for an MCV and a HCV and 2 to 7 times for an AT.
For 2050, improved durability of fuel-cell technology is expected to approximately double
the lifetime and shift the average fuel-cell system durability to 8000–30,000 h (U: 8000,
30,000), which, on average, corresponds to a system replacement of 0 to 1 time for an
MCV and a HCV and 0 to 3 times for an AT. Similar to BEVs, it is unlikely that more
than three (partial) fuel-system replacements in trucks will be acceptable and feasible
(cost-wise) in practice. However, the available evidence and elevated uncertainty do not
justify capping the replacement factors of current fuel-cell systems to a maximum of four
in the simulation, and the replacement factors were kept as estimated. It is noted that for
future fuel-cell systems, replacement factors do no longer exceed a value of 4, reflecting
expected durability improvements.
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In summary, the simulation provides input distributions of replacement values for
the different EV technologies, capped at a maximum value of 4. The average replacement
factors for electric trucks are then estimated to be as follows:

• BEV: 1.5 for MCV/HCV in 2019 and 1.0 in 2050;
• BEV: 4.0 for AT in 2019 and 2.5 in 2050;
• FCEV: 2.2 for MCV/HCV in 2019 and 1.2 in 2050;
• FCEV: 4.0 for AT in 2019 and 2.2 in 2050.

On a final note, it has been assumed that the ICE truck will not be re-engined, which is
likely too optimistic for the diesel AT given its long lifetime mileage. No information could
be found regarding the emission impacts of an engine overhaul for diesel trucks, and it is
recommended that this aspect be investigated further and added to future research work.

3.2. Mass of Vehicle, Battery and the Fuel-Cell System

The average tare mass of the simulated representative Australian ICE truck classes
varies between 3.1 tonnes to 24.3 tonnes (Table 2). A bootstrap analysis of the vehicle mass
of Australian ICE trucks suggests that the uncertainty (99.7% CI) in the average tare mass
is ±12% for MCVs and HCVs and ±8% for AT. This corresponds to a truncated ICEV input
distribution of (N: 3.1, 0.12) for MCVs, (N: 9.2, 0.37) for HCVs and (N: 24.3, 0.65) for ATs.

Tare mass is generally higher but variable for BEVs and FCEVs, depending on the
actual system specifications. The EV mass distributions are therefore adjusted to reflect
the mass differences for MCVs, HCVs and ATs. This is performed by adding the addi-
tional mass of the battery and fuel-cell systems. The mass of the battery and fuel cell
also needs to be computed separately as they have different emission intensities in the
manufacturing process.

The size and mass of the battery and fuel-cell systems are critical design parameters
for truck manufacturers as they affect the drive range, charging times and payload capacity
e.g., [41,42]). There is a relatively wide range in battery capacity in truck applications, with-
out a strong correlation with vehicle mass, reflecting the different operational conditions in
which trucks are required to operate [41,43].

In this study, the battery capacity (kWh) is defined as the triangular input distributions
for MCVs (T: 100, 250, 200), HCVs (T: 150, 400, 340) and ATs (T: 150, 1000, 600). FCEVs
use a smaller (system support) battery than BEVs, and their battery capacity is defined as
the triangular input distributions for MCVs (T: 40, 100, 60), HCVs (T: 50, 150, 80) and ATs
(T: 100, 200, 150). For battery-electric HDV applications, a plausible range for the battery
energy density at the pack level is assumed to be at the higher end (to maximise the mass
reduction of high-capacity batteries) and is assumed to lie between 0.15 to 0.20 kWh per kg
of battery, with a typical value of 0.16 kWh/kg (T: 0.15, 0.20, 0.16) for the current situation.
A significant increase is expected in the battery energy density. The question is whether
this improvement in energy density will translate into an increase in the electric range
or a reduction in battery mass. For the future situation, the nominal battery density is
expected to (at least) improve to 0.20 to 0.30 kWh per kg of battery, with a typical value of
0.27 kWh/kg (T: 0.20, 0.30, 0.27) [2,41,42,44–49].

However, larger improvements are quite possible. For instance, a recent EU study [49]
assumed large improvements in energy density (Wh/kg), with a four-fold increase in 2050
compared with 2020. It has been conservatively assumed in this study that any further
improvements in battery density beyond what is assumed will largely translate into a range
increase, leaving the battery mass approximately the same in the future. This effect has
been observed in a previous study where the lack of an energy efficiency improvement in
electric cars over a 10-year period was attributed to the growing battery size [50].

Using the battery capacity and energy density distributions in a Monte Carlo simula-
tion and subsequent distribution fitting, the battery mass distributions are estimated and
presented in Table 4. It is noted that a truncation of ±1 SD is applied specifically to the
battery mass distributions to prevent the use of unreasonably low or high values.
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Table 4. Battery and fuel-cell-system mass input distributions for three truck categories.

Year Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value (kg)
Plausible Min–Max
Value (kg)

2019 MC-BEV MBAT,BEV,MCV Weibull, W (6.22, 1161.68) 1080 868–1283
2019 HC-BEV MBAT,BEV,HCV Weibull, W (6.07, 1891.85) 1755 1384–2101
2019 AT-BEV MBAT,BEV,AT Non-standard beta, B (2.91, 3.21) 3454 2352–4541
2050 MC-BEV MBAT,BEV,MCV Normal, N (719, 136) 719 578–854
2050 HC-BEV MBAT,BEV,HCV Weibull, W (5.69, 1258.83) 1165 915–1395
2050 AT-BEV MBAT,BEV,AT Weibull, W (3.54, 2547.64) 2292 1533–3027

2019 MC-FCEV MBAT,FCEV,MCV Non-standard beta, B (3.51, 6.28) 394 315–477
2019 HC-FCEV MBAT,FCEV,HCV Non-standard beta, B (3.17, 5.98) 551 422–690
2019 AT-FCEV MFCL,FCEV,AT Non-standard beta, B (3.68, 4.72) 888 748–1027
2050 MC-FCEV MBAT,FCEV,MCV Non-standard beta, B (3.31, 8.19) 261 206–317
2050 HC-FCEV MBAT,FCEV,HCV Non-standard beta, B (3.16, 7.83) 367 278–460
2050 AT-FCEV MBAT,FCEV,HCV Non-standard beta, B (5.32, 9.75) 589 492–684

2019 + 2050 MC-FCEV MFCL,FCEV,MCV Non-standard beta, B (4.82, 10.14) 223 181–265
2019 + 2050 HC-FCEV MFCL,FCEV,HCV Non-standard beta, B (4.79, 7.61) 305 255–356
2019 + 2050 AT-FCEV MFCL,FCEV,AT Non-standard beta, B (4.76, 9.04) 608 459–756

Similarly to batteries, the rated power of a fuel cell is assumed to have a wide range in
truck applications, reflecting different types of missions with varying demands on vehicle
design [51]. The rated system power is defined as the triangular input distributions for
MCVs (T: 100, 200, 140), HCVs (T: 150, 250, 200) and ATs (T: 200, 600, 400).

Fuel-cell specific power values are rarely reported and, if so, often have inconsistent
system definitions and assumptions [52,53]. Wang et al. [52] provided an overview of
technical targets for integrated fuel-cell systems in transport applications showing a specific
power target of 0.65 kW/kg. DOE [53] estimated the state-of-the-art in fuel cells used in
transport application to be 0.86 kW/kg in 2020, with the ultimate target being 0.90 kW/kg.
A plausible fuel-cell power density is therefore assumed to lie between 0.5 to 0.9 kW per kg
of fuel cell, with a typical value of 0.6 kW/kg (T: 0.5, 0.6, 0.9). For future years, an
improvement in fuel-cell energy efficiency is expected from the current 50–60% to 65%
in the near term and up to 70% in the long term [49,54,55]. It has been assumed in this
study that this will largely translate into a range and power increase, leaving the fuel-cell
mass approximately the same in the future. Thus, effectively the same fuel-cell power
density distribution is used for both 2019 and 2050. Using these distributions in a Monte
Carlo simulation and subsequent distribution fitting, the fuel-cell mass distributions can be
estimated. They are presented in Table 4. Similarly to the battery mass simulation, a more
restricted truncation of ±1 SD is applied specifically to the fuel-cell system mass to prevent
the use of unreasonably low or high values.

As a final step, the mass input distributions (Table 4) were used to create vehicle tare
mass input distributions for BEV and FCEV trucks. The estimated mass of the combined
battery and fuel-cell systems in electric trucks is typically about 15–35%, 10–20% and 5–15%
of the vehicle tare mass for battery electric MCVs, HCVs and ATs, and typically about
15–20%, 5–10% and 5% for fuel-cell MCVs, HCVs and ATs, respectively.

3.3. Electricity Production, Distribution and Recharging Losses

To assess greenhouse gas (GHG) emissions from battery electric vehicles (BEVs), it is
essential to estimate the indirect emissions associated with electricity generation. Input
distributions for these estimates were initially developed in a prior study [17] and are
subsequently utilized in this follow-up study. These estimates encompass the impact
of energy losses attributed to the transmission and conversion of electricity, commonly
referred to as grid losses. A plausible range for transmission and conversion losses was
determined to be between 5% and 10%, with a typical value of 6% (T: 1.05, 1.10, 1.06).
Efficiency is computed as 100% minus the loss (%). The distribution definitions are shown
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in Table 5. It is noted that the future scenario (2050) assumes a 10% fossil fuel use in
electricity generation (Section 2.4).

Table 5. GHG emission-intensity distributions for grid-loss-corrected electricity generation in Aus-
tralia by year (g CO2-e/kWh consumed).

Year Input Distribution Typical
Value

Plausible
Min–Max Value

2019 Normal, N (760, 11.4) 760 725–794
2050 Skewed t, S (78.66, 4.52, 2.87, 27.08) 82 74–96

When considering the electricity consumed by BEVs, it is important to factor in energy
losses during the battery recharging process. A reasonable range for battery charging
losses is estimated to be between 5% and 20%, with an average value of approximately
10% [7,47,56–61]. Efficiency is computed as 100% minus the loss (%). A triangular distri-
bution is assumed for the battery charging efficiency in 2019 (T: 0.80, 0.95, 0.90), with an
improved performance in 2050 (T: 0.90, 0.96, 0.93).

3.4. Hydrogen Production, Distribution and Refuelling Losses

The GHG emission impacts of hydrogen use in the transport sector critically depend
on the production and distribution methods. In fact, a major challenge in analysing the
impacts of hydrogen use for transport applications is the large number of combinations
and permutations of hydrogen production, transportation, distribution, vehicle on-board
storage options and fuelling approaches [42,62].

Currently, around three-quarters of the annual global hydrogen production is obtained
through natural-gas reforming (steam–methane reforming (SMR), grey hydrogen), and it
has been estimated that this process generates 10 to 12 tons of CO2 per ton of hydrogen
produced [48,63], as well as emissions of air pollutants such as NOx and PM. This estimate
includes SMR-related emissions but does not yet include emissions related to hydrogen
distribution. A range of 100–134 g CO2-e/MJ H2 has been estimated for the SMR hydrogen
pathway [48,64], which corresponds to (U: 100, 135). To reduce the GHG impacts of
hydrogen production from fossil fuels, green hydrogen can be used (electrolysis using
renewable energy). The scientific literature e.g., [48,64] shows a range of about 10–35 g
CO2-e/MJ H2 (U: 10, 35) for the renewable hydrogen pathway using wind or solar power.

It is assumed for 2019 that about 75% of hydrogen is produced and distributed by
fossil fuels (SMR) and about 25% is produced by renewables (electrolysis), i.e., (U: 80,
110). For consistency with electricity generation (Section 3.3), it is assumed that for 2050,
10% of hydrogen is produced and distributed by fossil fuels (SMR) and 90% is produced
by renewables (electrolysis), i.e., (U: 20,45). Table 6 shows the results after conversion to
mass units.

Table 6. GHG emission-intensity distributions for hydrogen production in Australia by year
(g CO2-e/g H2).

Year Input Distribution Typical
Value

Plausible
Min–Max Value

2019 Uniform, U (9.3, 13.2) 11.2 9.3–13.2
2050 Uniform, U (2.3, 5.4) 3.8 2.3–5.4

Hydrogen is leaked along its utilisation chain. Estimated hydrogen leakage rates
vary substantially in the scientific literature from 0.1% to 10% [47,65,66], which reflects the
current lack of reliable information and associated uncertainty. In this study, hydrogen
leakage was assumed to vary between 0.1% and 10%, with a typical value of 2% for a
mature system with widespread hydrogen use, considering that higher values would
result in a significant financial loss. A triangular distribution is assumed for the hydrogen
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distribution efficiency, i.e., (T: 0.900, 0.999, 0.980) for 2019, with an improved performance
in 2050 (T: 0.950, 0.999, 0.990).

Hydrogen refuelling losses are estimated to vary between 0.1% and 1.0%, with a
typical value of 0.2%. A triangular distribution is assumed for the hydrogen refuelling
efficiency, i.e., (T: 0.990, 0.999, 0.998), with an improved performance in 2050 (T: 0.995,
0.999, 0.998).

3.5. Future Improvements in LCA Input Variables

Real-world improvements in life-cycle performance during the period 2019–2050 for
the range of vehicle technologies considered in this study are closely linked to (international)
policy and technological developments; the magnitude, scope and implementation dates
of emission targets; the progression and intensity of the climate change impacts and the
resulting perceived urgency and requirements to reduce greenhouse gas emissions.

The technological development of relatively new technologies such as BEVs and
FCEVs is dynamic and relatively uncertain in terms of real-world energy improvements
up until 2050, which is captured in the input distributions. Relevant information for these
technologies, such as battery size, capacity and chemistry, battery durability, vehicle mass,
fuel-cell efficiency and so forth, can quickly become outdated and, therefore, would benefit
from regular review and update. Table 1 shows which variables in the LCA model are
time dependent and that vary with the scenario and year of assessment. Not all variables
have different distributions for 2019 and 2050 and they use the same inputs for both years.
As discussed in Sections 3.1 and 3.2, lifetime mileage and vehicle mass, battery mass and
fuel-cell mass are assumed to be (approximately) constant over time, with some restricted
variability to account for technological improvements (e.g., battery energy density).

The emission intensities (ω) of electricity generation and hydrogen production were
specifically developed for both years in Sections 3.3 and 3.4, reflecting the expected impacts
of current decarbonisation efforts and the increased use of renewable energy. It is expected
that emission intensities for infrastructure (σ) and upstream (ϕ) aspects will similarly be
reduced over time. It has been assumed that the reduction factor in 2050 for these variables
varies between 10% and 50% of the 2019 values (U: 0.10, 0.50). The emission intensities
for vehicle, battery and fuel-cell production (φ) will also improve over time, and these are
discussed in Section 3.6. Real-world fuel and energy consumption (ε, H) will change over
time, and these are discussed in Section 3.7.

3.6. Truck Manufacturing

Conducting a thorough evaluation of the vehicle manufacturing life-cycle aspect at
the fleet level can be extremely challenging for a product as intricate as a truck. The
greenhouse gas (GHG) emissions per produced vehicle are contingent on factors such as
the make/model, manufacturing location, types of materials used, vehicle size and mass,
and the emission intensity of the energy employed in the production process. Additionally,
for electric vehicles, a crucial consideration is the production of batteries and fuel-cell
systems, which contributes substantially to GHG emissions. Despite these challenges,
pLCA can be used to make a reasonable assessment of GHG emission impacts by using
plausible inputs in the simulation. The input distribution models 1, 2 and 3 (Section 2.2)
were developed as follows:

For heavy-duty ICEV production, a plausible range for GHG emission intensity is 2.0
to 3.5 kg CO2-e/kg of vehicle, with a typical value of 3.0 kg CO2-e/kg of vehicle, which
is lower than those used for passenger vehicles [2,17,48,67–69], i.e., (T: 2.0, 3.5, 3.0). For
future vehicle manufacturing, this emission intensity is expected to drop significantly
due to the increased use of recycling practices and the general decarbonisation of energy
systems [14,70]. The reduction factor in 2050 is expected to vary between 10% and 50% of
the 2019 values (U: 0.10, 0.50). For electric vehicles, the same distribution was assumed for
non-battery and non-fuel-cell vehicle components. The GHG emissions for battery and
fuel-cell production need to be estimated separately and added.
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Battery manufacturing emissions (without second-life deployment) are likely to fall
in a range between 35 and 160 kg CO2-e per kWh of battery capacity, with a current
average of about 90 kg CO2-e per kWh [2,7,47,48,71], so (T: 35, 160, 90). For future battery
manufacturing, this emission intensity is expected to drop significantly for the same reasons
mentioned before. For batteries, specifically, there is also the possibility of the second-life
use of spent batteries, which can further decrease the vehicle’s battery carbon footprint
by 50% [7]. Battery manufacturing emissions in 2050 are assumed to fall between 9 and
42 kg CO2-e per kWh of battery capacity [47], with a typical value of about 20 kg CO2-e per
kWh, so (T: 10, 40, 20). The reduction factor in 2050 is therefore expected to vary between
10% and 25% of the 2019 values (U: 0.10, 0.25). The assumed distributions for the BEV
battery capacity, battery mass and battery replacement factor have already been discussed
in Sections 3.2 and 3.3.

The manufacturing of the fuel-cell system (including hydrogen tank) is assumed to
fall between 60 and 350 kg CO2-e per kW of rated power [2,37,48] (U: 60, 350). Similarly to
batteries, the reduction factor in 2050 is assumed to vary between 10% and 25% of the 2019
values (U: 0.10, 0.25). The assumed distributions for the fuel-cell system mass, rated power
and replacement factor have already been discussed in Sections 3.2 and 3.3.

Manufacturing emissions are normalised to a variable lifetime mileage (Section 3.2),
and all input distributions are combined through a Monte Carlo simulation, with the results
shown Table 7. The simulation suggests that BEV trucks in the recent past (2019) had
approximately three to four times the distance-normalised manufacturing emissions of
conventional diesel trucks. For FCEV trucks, this is even higher and also more variable,
approximately five- to ten-fold. To a significant extent, this is due to the impact of the
replacement factors (ΓBAT and ΓFCL). Manufacturing of electric vehicles “naturally” has
a higher carbon footprint than that of conventional vehicles, and the only way to reduce
this difference is through the further decarbonisation of battery and fuel-cell production
processes and significantly increased (second) use and recycling. Nevertheless, these
increased normalised emissions (g/km) can be more than compensated for in the use phase,
leading to an overall emissions improvement, as will be discussed later.

Table 7. GHG emission factor (g CO2-e/km) distributions for vehicle manufacturing (M).

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

M 2019 MC-ICEV evehicle,ICEV,MCV Non-standard beta, B (8.82, 10.47) 18 12–25
M 2019 HC-ICEV evehicle,ICEV,HCV Non-standard beta, B (9.66, 11.63) 52 34–72
M 2019 AT-ICEV evehicle,ICEV,AT Non-standard beta, B (5.15, 4.170) 35 24–44
M 2050 MC-ICEV evehicle,ICEV,MCV Non-standard beta, B (2.66, 3.56) 6 1–12
M 2050 HC-ICEV evehicle,ICEV,HCV Weibull, W (2.25, 18.54) 16 4–35
M 2050 AT-ICEV evehicle,ICEV,AT Weibull, W (2.28, 12.20) 11 3–22

M 2019 MC-BEV evehicle,BEV,MCV Non-standard beta, B (3.15, 39.66) 68 28–150
M 2019 HC-BEV evehicle,BEV,HCV Lognormal, L (4.86, 0.29) 134 63–277
M 2019 AT-BEV evehicle,BEV,AT Gamma, G (10.37, 0.07) 145 57–300
M 2050 MC-BEV evehicle,BEV,MCV Non-standard beta, B (4.94, 10.40) 14 5–25
M 2050 HC-BEV evehicle,BEV,HCV Non-standard beta, B (4.02, 7.08) 30 11–56
M 2050 AT-BEV evehicle,BEV,AT Non-standard beta, B (5.56, 22.64) 28 8–62

M 2019 MC-FCEV evehicle,FCEV,MCV Non-standard beta, B (2.42, 13.12) 169 43–474
M 2019 HC-FCEV evehicle,FCEV,HCV Non-standard beta, B (2.76, 11.81) 260 84–658
M 2019 AT-FCEV evehicle,FCEV,AT Lognormal, L (5.34, 0.44) 228 73–657
M 2050 MC-FCEV evehicle,FCEV,MCV Lognormal, L (2.97, 0.41) 21 6–64
M 2050 HC-FCEV evehicle,FCEV,HCV Gamma, G (7.50, 0.20) 38 11–96
M 2050 AT-FCEV evehicle,FCEV,AT Lognormal, L (3.37, 0.38) 31 9–84

As shown in Table 7, in 2050, manufacturing emissions for all technology classes will
have reduced substantially, by about 70% to 90%, and the relative differences between
technology classes will also have dropped. FCEV manufacturing performs the worst, with
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about 10% to 55% higher emissions compared with BEV manufacturing, whose emissions
are 1.8 to 2.6 times higher than manufacturing emissions for conventional diesel vehicles.

3.7. Operational Electricity Use, Fuel Consumption and Emissions (On-Road Driving)

Operational life-cycle aspects relate to on-road driving. These vehicle emissions,
fuel use and energy consumption are affected by a range of vehicle and engine design
factors, as well as traffic conditions (congestion) and ambient conditions. Two software
tools were used to estimate operational emissions for the nine powertrain and vehicle class
combinations, namely the Australian Fleet Model (AFM) and the Net Zero-Vehicle-Emission
Model (n0vem).

AFM was used to simulate future fleet growth and fleet turnover (scrappage) for the
on-road fleet up until 2060 and to estimate the vehicle population and total travel activity,
expressed as vehicle kilometres travelled (VKT). AFM is specifically designed to provide
fleet data at the level of detail required for vehicle emissions and energy simulation and
provides estimates for 15,200 individual vehicle classes for past, current and future base
years [1]. AFM is capable of simulating complex patterns in the fleet turnover processes
through consideration of the vehicle-class specific on-road population, vehicle sales data,
vehicle usage profiles, population growth and scrappage rates. AFM was used to generate
an input file for the vehicle emissions software n0vem, reflecting the Australian on-road
fleet for 2019.

The vehicle-emission modelling software n0vem was released in 2022 and fully incor-
porates the well-established COPERT Australia v1.3.5 software for ICEV emission mod-
elling but expands the GHG emission estimation to include non-ICEV vehicle technology,
i.e., HEV, PHEV, BEV and FCEV.

COPERT (COmputer Program to calculate Emissions from Road Transport) is a glob-
ally used software tool used to calculate air pollutant and greenhouse gas emissions
produced by road transport. A dedicated Australian version of the software, COPERT
Australia, was developed for all fossil-fuelled vehicles in 2012–2013 to properly reflect the
Australian fleet mix, fuel quality and driving characteristics and to provide accurate vehicle
emission estimates for the Australian situation. COPERT Australia is now widely used
in Australia for the development of national, state and regional emission inventories, as
well as for the computation of fleet-average emission factors (e.g., as input for air-quality
impact assessments) and for life-cycle assessment (LCA) studies e.g., [17]. The methods
and empirical data used in the development of COPERT Australia are transparent and have
been comprehensively reported in national and international reports, scientific journals
and conference proceedings since 2012. Moreover, particular efforts have been made to
assess emission model performances and to conduct model validations using independent
empirical data collected from tunnel studies e.g., [72], on-road air quality measurements
and remote sensing e.g., [73] and on-board emission measurements e.g., [74]).

The n0vem tool also considers the expected emission and energy efficiency improve-
ments for all fundamental vehicle technologies up until 2060. It estimates the emissions
for 9558 current and future vehicle technology classes (ICEV, HEV, PHEV, BEV, FCEV). It
considers the year of manufacture and different mass and size categories, which is important
for the accurate assessment of electricity consumption, fuel use, energy use and emissions. It
estimates GHG emissions (CO2, CH4, N2O, BC, CO2-e), fuel consumption (petrol, E10, diesel,
LPG, hydrogen) and energy/electricity use (kWh consumed). About two million emission
factors (g/km), fuel use factors (g/km, MJ/km) and electricity/energy use factors (Wh/km)
are generated by n0vem. These factors are generated for different operational (driving)
conditions and different emission types. They include vehicle speed dependencies (driving
behaviour and congestion level), hot-running emissions and additional GHG emissions due
engine start, air-conditioning use, engine oil and NOx emission control (SCR).

AFM and n0vem were used to estimate the total energy use, fuel consumption and
GHG emissions from Australian road transport for 2019 and 2050. It is noted that n0vem
GHG emission factors include CO2-e emissions due to fuel combustion, engine oil losses
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and SCR operation. Meteorological input data (ambient temperature, humidity) for Aus-
tralia was sourced from previous research work [75]. The default inputs for the Aus-
tralian mean network speed and VKT shares were used in the simulation, which are for
MCVs/HCVs and ATs, respectively:

• 70% and 15% VKT share of urban driving (30 km/h);
• 5% and 10% VKT share of rural driving (75 km/h);
• 25% and 75% VKT share of highway driving (100 km/h).

Prediction performance was assessed by comparing the predictions of total fuel con-
sumption for the Australian road transport sector with the independent fuel consumption
data by fuel type for 2019. The overall difference was 0.1%, showing a good level of
agreement [1]. The simulation outputs were then used to estimate representative on-road
fleet-average GHG emission factors for Australian ICE trucks, fleet-average electricity
consumption factors for BE trucks (including charging losses) and hydrogen consumption
factors for FCE trucks (including refuelling leakage losses). The estimated uncertainty
in the fleet-average operational emission factor is based on an analysis of the Survey of
Motor Vehicle Use (SMVU), which is published by the Australian Bureau of Statistics (ABS).
The ABS reports the average rate of fuel consumption (L/100 km) by vehicle type and the
relative standard error (RSE). The standard error is a measure of the spread of estimates
around the true value, and RSE is the standard error that is expressed as a percentage of
the estimate. The plausible range is then defined as the 99.7% confidence interval, which is
estimated as ±3 RSE.

Fuel consumption (FC) and RSE data were retrieved from the SMVU [35] for rigid trucks
and articulated trucks. A diesel fuel density of 0.836 kg/L and carbon intensity of 3.16 g
CO2/g fuel was used to convert units from l/100 km to g CO2/km. The relative uncertainty
in the converted ABS figures is assumed to be ±3 RSE and follows a truncated normal
distribution. The analysis shows that the plausible range for truncation is ±6% for MCVs and
HCVs and ±3% for ATs, respectively. This distribution and the plausible ranges are assumed
to apply to all powertrains. The results are shown in Tables 8–10. It is noted that the GHG
emission factor for the Australian AT fleet derived from the SMVU (1457 g CO2/km) is 3%
higher than the value predicted by n0vem (1420 g CO2-e/km). The SMVU-derived emission
factor for rigid trucks (755 g CO2/km) lies in between the more refined classification used in
n0vem for MCVs (644 g CO2-e/km) and HCVs (860 g CO2-e/km).

Table 8. ICEV GHG emission factor (g CO2-e/km) distributions for on-road driving (operational, O).

Life-Cycle
Aspect

Vehicle
Technology

LCA model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

O 2019 MC-ICEV eroad,ICEV,MCV Normal, N (644, 13) 644 605–682
O 2019 HC-ICEV eroad,ICEV,HCV Normal, N (860, 17) 860 808–911
O 2019 AT-ICEV eroad,ICEV,AT Normal, N (1420, 14) 1420 1377–1462
O 2050 MC-ICEV eroad,ICEV,MCV Non-standard beta, B (3.57, 3.91) 547 496–603
O 2050 HC-ICEV eroad,ICEV,HCV Non-standard beta, B (3.52, 3.77) 731 663–804
O 2050 AT-ICEV eroad,ICEV,AT Triangular, T (1111, 1309, 1198) 1207 1111–1309

Table 9. Electricity (Wh/km) consumption distributions for on-road driving (operational, O), includ-
ing battery recharging losses.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

O 2019 MC-BEV εMCV Non-standard beta, B (5.77, 11.49) 908 821–1021
O 2019 HC-BEV εHCV Non-standard beta, B (5.53, 11.05) 1229 1113–1384
O 2019 AT-BEV εAT Non-standard beta, B (3.81, 7.65) 3343 3080–3695
O 2050 MC-BEV εMCV Non-standard beta, B (4.14, 4.58) 646 574–720
O 2050 HC-BEV εHCV Non-standard beta, B (4.17, 4.68) 875 778–979
O 2050 AT-BEV εAT Non-standard beta, B (2.92, 3.17) 2380 2163–2622
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Table 10. Hydrogen consumption (g H2/km) distributions for on-road driving (operational, O),
including hydrogen refuelling losses.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

O 2019 MC-FCEV HMCV Non-standard beta, B (11.42, 11.82) 45 43–48
O 2019 HC-FCEV HHCV Non-standard beta, B (71.83, 62.17) 61 58–64
O 2019 AT-FCEV HAT Gamma, G (8168.15, 45.95) 178 173–183
O 2050 MC-FCEV HMCV Gamma, G (564.18, 15.63) 36 33–40
O 2050 HC-FCEV HHCV Non-standard beta, B (3.07, 3.35) 49 45–54
O 2050 AT-FCEV HAT Triangular, T (130, 155, 140) 142 131–154

For 2050, an efficiency improvement factor was applied to the distribution definitions
shown in Tables 8–10. Although some studies assume zero or small future improve-
ments [76], significant to large gains in on-road fuel and energy efficiency are, in principle,
technically possible for all vehicle technologies.

• Specifically, for compression-ignition (diesel) ICEVs, further technological “system ap-
proach” engine improvements are expected to lead to an overall 10–20% fuel efficiency
improvement in 2050 (U: 0.80, 0.90). Measures to achieve this may include, but are not
limited to, advanced systems for valve-train control, use of low-viscosity lubricants,
variable compression ratios, re-use of waste heat and engine downsizing [49,77,78].

• BEV energy improvement is expected to be larger and is expected to occur sooner
than that for FCEVs. One of these expected improvements is a significant increase
in battery energy density, as was discussed in Section 3.2. It has been assumed in
this study that this will largely translate into a range and power increase without
affecting battery mass significantly. There are several potential improvements that
will lead to significant efficiency improvements for BEVs, for instance, purpose design,
in-wheel or wheel-hub electric motors rather than central engines, improved energy
recuperation, decreased coasting resistance and the application of lightweight chassis
components [50]. The expected improvement in energy efficiency for BEVs is assumed
to be in the order of 20–30% in 2050 (U: 0.70, 0.80).

• Although some studies assume zero improvement for FCEVs [76], further improve-
ment in the fuel-cell energy efficiency is expected from the current 50–60% to 65% in
the near term and up to 70% in the long term [49,54,55]. This leads to an estimated im-
provement in energy efficiency for FCEVs of 15–25% in 2050 (U: 0.75, 0.85). It has been
assumed in this study that this will largely translate into a range and power increase.

BEVs have larger expected efficiency improvements than FCEVs and ICEVs, which
aligns with assumptions made in other studies [49,76,79–81]. Monte Carlo simulation and
subsequent distribution fitting was used to combine the input distributions for real-world
on-road fuel consumption (ICEV), electricity consumption (BEV), hydrogen consumption
(FCEV), future efficiency improvement (ICEV, BEV, FCEV), battery recharging losses (BEV)
and refuelling losses (FCEV) to create the input distributions presented in Tables 8–10.

Electricity and hydrogen consumption (Tables 9 and 10) by electric vehicles still need to
be converted to the functional unit (per vehicle km), which depends on the year of interest
(2019 or 2050). For BEVs, electricity consumption (Table 9) is combined with the emission
intensities (g CO2-e/kWh consumed) for the grid-loss-corrected electricity generation
in Australia in 2019 and 2050 (Table 5) in a Monte Carlo simulation and subsequent
distribution fitting. The results are shown in Table 11.

For FCEVs, hydrogen consumption (Table 10) is combined with the emission intensities
(g CO2-e/g H2) for hydrogen production in Australia in 2019 and 2050 (Table 6) and for
hydrogen losses (distribution and refuelling) in a Monte Carlo simulation and subsequent
distribution fitting. The results are shown in Table 12.
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Table 11. BEV GHG emission factor (g CO2-e/km) distributions for on-road driving (operational, O),
including grid losses and battery charging losses.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

O 2019 MC-BEV eroad,BEV,MCV Non-standard beta, B (6.47, 12.41) 690 618–780
O 2019 HC-BEV eroad,BEV,HCV Non-standard beta, B (6.64, 13.03) 934 837–1059
O 2019 AT-BEV eroad,BEV,AT Non-standard beta, B (5.01, 9.58) 2541 2305–2837
O 2050 MC-BEV eroad,BEV,MCV Non-standard beta, B (9.71, 23.05) 53 46–64
O 2050 HC-BEV eroad,BEV,HCV Lognormal, L (4.27, 0.06) 72 62–86
O 2050 AT-BEV eroad,BEV,AT Non-standard beta, B (8.24, 19.56) 195 170–232

Table 12. FCEV GHG emission factor (g CO2-e/km) distributions for on-road driving (operational,
O), including hydrogen distribution and refuelling losses.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

O 2019 MC-FCEV eroad,FCEV,MCV Non-standard beta, B (2.51, 2.60) 529 446–623
O 2019 HC-FCEV eroad,FCEV,HCV Gamma, G (157.57, 0.22) 718 611–834
O 2019 AT-FCEV eroad,FCEV,AT Non-standard beta, B (1.57, 1.71) 2083 1795–2398
O 2050 MC-FCEV eroad,FCEV,MCV Location-scale t, O (2,289,788, 142, 32) 142 83–209
O 2050 HC-FCEV eroad,FCEV,HCV Non-standard beta, B (1.53, 1.81) 193 113–821
O 2050 AT-FCEV eroad,FCEV,AT Non-standard beta, B (1.67, 1.78) 560 331–814

Finally, changes in the truck mass (Section 3.2) will affect operational energy and
fuel consumption and therefore on-road emissions. Figure 2 visualises the generalised
truck-mass-correction algorithms that are used in the n0vem software for energy use
in different driving conditions. These correction algorithms are used in the full LCA
simulation (Section 4) to correct the operational emissions due to changes in the vehicle
mass. It is noted that these corrections lead to relatively small adjustments in on-road fuel
consumption and energy use (within ±12%), since this study explicitly uses fleet-average
values rather than the more variable values for individual vehicles.
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3.8. Truck Maintenance

The contribution of truck maintenance to the emissions performance will be added to
the operational life-cycle aspect in the full simulation of all the life-cycle aspects combined
(Section 4) by assuming a contribution of 4 to 7 g CO2-e/km for all power trains and vehicle
classes [2], i.e., (U: 4, 7).

3.9. Energy Infrastructure

The construction and retirement of fossil-fuel power plants, facilities involved in fossil
fuel processing (such as refineries and fuel storage), hydrogen production and distribution
infrastructure, as well as renewable energy sources (including solar plants, wind farms,
hydropower facilities, etc.), consume energy and result in the generation of greenhouse gas
(GHG) emissions.

The input distribution for fossil-fuel production was adopted from a previous study [17]
where a plausible range was estimated as 2 to 30 g CO2-e per kg of fossil-fuel produced (U:
2, 30). This distribution was combined in a Monte Carlo simulation with the distributions
for real-world fuel consumption, which were derived from Table 8 after conversion from
GHG emissions to real-world (diesel) fuel consumption. The sampling distributions were
used to determine the best theoretical distribution through a maximum-likelihood fit. The
results are shown in Table 13.

Table 13. Infrastructure (I) GHG emission factor (g CO2-e/km) distributions for Australian ICEVs.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

I 2019 MC-ICEV einfra,ICEV,MCV Uniform, U (0.4, 6.2) 3 0–6
I 2019 HC-ICEV einfra,ICEV,HCV Uniform, U (0.6, 8.3) 4 1–8
I 2019 AT-ICEV einfra,ICEV,AT Uniform, U (0.9, 13.5) 7 1–14
I 2050 MC-ICEV einfra,ICEV,MCV Uniform, U (0.4, 5.7) 3 0–6
I 2050 HC-ICEV einfra,ICEV,HCV Uniform, U (0.5, 7.6) 4 1–8
I 2050 AT-ICEV einfra,ICEV,AT Uniform, U (0.8, 12.3) 6 1–12

Input distributions for electricity generation were developed in a previous study [17]
based on data from 33 LCA studies. Turconi et al. [82] reviewed 33 LCA studies, and the
raw data from this study were used to determine the best theoretical distribution through a
maximum-likelihood fit and the associated plausible ranges for infrastructure related GHG
intensity per kWh of electricity (generated) by fuel type. The results are shown in Table 14.

Table 14. GHG emission intensities (g CO2-e/kWh generated) distributions for commissioning and
decommissioning electricity generation infrastructure by fuel type.

Fuel Type Distribution Typical Value Plausible
Min–Max Value

Biomass Uniform, U (0.04, 2.00) 0.45 0.04–2.00
Coal Uniform, U (0.8, 46.0) 8.00 0.80–46.00
Gas Triangular, T (0.60, 1.85, 3.10) 1.85 0.60–3.10
Hydro Uniform, U (3.10, 20.00) 7.40 3.10–20.00
Oil Triangular, T (1.00, 2.20, 3.00) 2.20 1.00–3.00
Solar Exponential, E (0.015) 67.94 20.00–190.00
Wind Uniform, U (3.00, 41.00) 18.93 3.00–41.00

The fuel type distributions defined in Table 14 were used in a Monte Carlo simulation
along with the previously mentioned distributions for grid losses (T: 1.05, 1.10, 1.06) and
BEV real-world energy consumption distributions (Table 9), which account for battery
charging losses. The fuel-type percentages from Table 3 were used as weights in this
process. The resulting sampling distributions were employed to identify the optimal
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theoretical distribution through a maximum-likelihood fit, and the outcomes are presented
in Table 15.

Table 15. Infrastructure (I) GHG emission factor (g CO2-e/km) distributions for Australian BEVs.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

I 2019 MC-BEV einfra,BEV,MCV Non-standard beta, B (2.25, 2.82) 19 4–37
I 2019 HC-BEV einfra,BEV,HCV Non-standard beta, B (2.18, 2.61) 26 5–51
I 2019 AT-BEV einfra,BEV,AT Non-standard beta, B (2.19, 2.59) 71 15–137
I 2050 MC-BEV einfra,BEV,MCV Gamma, G (6.38, 0.29) 22 7–49
I 2050 HC-BEV einfra,BEV,HCV Lognormal, L (3.31, 0.40) 30 10–67
I 2050 AT-BEV einfra,BEV,AT Non-standard beta, B (2.11, 4.82) 81 28–183

A focus on the regional production of hydrogen seems to be required for Australia,
given its vast size and long transport distances. However, no information or data could
be located to inform the development of the LCA input distributions for the hydrogen
production infrastructure. The infrastructure-related GHG emission factors were therefore
assumed to be similar to those developed for BEVs (Table 15), and further research is
recommended to develop input distributions for relevant hydrogen pathways (SMR and
electrolysis with renewables).

3.10. Upstream Emissions (Fuel/Energy)

The extraction, transport, production, and distribution processes involved in obtaining
refined fossil fuels like petrol and diesel consume energy and result in the generation of
greenhouse gas (GHG) emissions. Data published in the international literature on well-
to-wheel assessments indicate that a range of 14% to 28% of the contained energy in these
fuels is consumed throughout the chain, with an estimated average value of 20% (U: 0.14,
0.28) [6–8,44,46,82,83]. This distribution was combined in a Monte Carlo simulation with the
distributions for real-world fuel consumption derived from Table 8, after conversion from
GHG emissions to real-world (diesel) fuel consumption. The sampling distributions were
employed to identify the optimal theoretical distribution using the maximum-likelihood fit,
and the outcomes are presented in Table 16.

Table 16. Fuel/energy (F) GHG emission factor (g CO2-e/km) distributions for Australian ICEVs.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

F 2019 MC-ICEV efuel,ICEV,MCV Location-scale t, O (2,180,536, 43, 8) 43 28–59
F 2019 HC-ICEV efuel,ICEV,HCV Uniform, U (37, 79) 57 37–79
F 2019 AT-ICEV efuel,ICEV,AT Uniform, U (63, 127) 94 63–127
F 2050 MC-ICEV efuel,ICEV,MCV Location-scale t, O (1,556,144, 36, 7) 36 23–51
F 2050 HC-ICEV efuel,ICEV,HCV Normal, N (48, 10) 49 31–68
F 2050 AT-ICEV efuel,ICEV,AT Non-standard beta, B (1.54, 1.79) 80 51–112

Upstream emissions for electricity generation are GHG emissions due to the upstream
extraction, transport, production and distribution of the fossil fuels used in electricity
generation. Input distributions for electricity generation were developed in a previous
study [17] and are adopted here. For BEVs in 2019, real-world electricity consumption
(Table 9) was combined with the upstream emission intensity value (80 g CO2-e/kWh
consumed), published as Scope 3 NGA GHG emission factors (National Greenhouse
Accounts) for Australia, and a skewed t distribution to quantify the uncertainty (S: 0.94,
0.09, 1.49, 216.93), truncated at 0.75 and 1.30, in a Monte Carlo simulation and subsequent
distribution fitting. For BEVs in 2050, real-world electricity consumption (Table 9) was
combined with the upstream GHG emission intensities for electricity generation using a
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range of renewables and fossil fuels (Table 9 in [17]) and the grid-loss distribution (T: 1.05,
1,10, 1.06) in a Monte Carlo simulation and subsequent distribution fitting. The results
are shown in Table 17. It has conservatively been assumed that the proportion of battery
electric truck operators that generate their own sustainable electricity (solar panels) for
battery recharging is zero.

Table 17. Fuel/energy (F) GHG emission factor (g CO2-e/km) distributions for Australian BEVs.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

F 2019 MC-BEV efuel,BEV,MCV Lognormal, L (4.26, 0.07) 71 58–88
F 2019 HC-BEV efuel,BEV,HCV Lognormal, L (4.56, 0.07) 96 78–121
F 2019 AT-BEV efuel,BEV,AT Lognormal, L (5.57, 0.07) 263 214–328
F 2050 MC-BEV efuel,BEV,MCV Weibull, W (2.67, 7.85) 7 1–16
F 2050 HC-BEV efuel,BEV,HCV Non-standard beta, B (4.39, 11.13) 10 1–22
F 2050 AT-BEV efuel,BEV,AT Non-standard beta, B (4.38, 11.32) 26 4–61

For FCEVs, upstream emissions relate to the extraction, transport, production and
distribution of natural gas for the SMR process and water for both SMR and electrolysis.
For natural gas, the same assumption as was previously made for fossil fuels was used,
namely that up to 14 to 28% of the contained energy in the fuels is consumed within the
chain, with an estimated average value of 20% (U: 0.14, 0.28). Assuming that about 3.0
to 3.5 times the amount of natural gas is required to produce 1 kg of hydrogen, reflecting
the LHV ratio and an assumed 70 to 80% SMR conversion efficiency (U: 3.0, 3.5), the two
uniform distributions were combined in a Monte Carlo simulation with the distributions
for on-road hydrogen consumption (Table 9). As mentioned before, it was assumed that
about 75% and 10% of hydrogen is produced and distributed with fossil fuels (SMR) in
2019 and 2050, respectively. The carbon intensity of natural gas is assumed to be 2.74 g
CO2-e/g fuel.

The sampling distributions were employed to identify the optimal theoretical distribu-
tion using a maximum-likelihood fit, and the outcomes are presented in Table 18.

Table 18. Upstream (U) GHG emission factor (g CO2-e/km) distributions for Australian FCEVs.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

U 2019 MC-FCEV eupstream,FCEV,MCV Normal, N (64, 13) 64 40–91
U 2019 HC-FCEV eupstream,FCEV,HCV Location-scale t, O (2,191,700, 86, 17) 86 54–122
U 2019 AT-FCEV eupstream,FCEV,AT Non-standard beta, B (2.01, 2.16) 249 157–355
U 2050 MC-FCEV eupstream,FCEV,MCV Triangular, T (3.8, 10.3, 5.8) 7 4–10
U 2050 HC-FCEV eupstream,FCEV,HCV Triangular, T (5.4, 13.9, 7.9) 9 6–14
U 2050 AT-FCEV eupstream,FCEV,AT Non-standard beta, B (1.91, 2.59) 27 16–40

Upstream emissions related to clean-water production and delivery for electrolysis was
set to zero in the absence of accurate input information. But it is noted that these emissions
could be significant and would be a function of the production method (e.g., desalination
plants) and delivery method (pipelines, trucks). The total upstream emissions for hydrogen
are therefore likely to be underestimated, and further research is recommended.

3.11. Vehicle Disposal and Recycling

Evaluating the impacts of recycling and disposal in a life-cycle assessment can pose
significant challenges for a product as intricate as a truck. GHG emissions from the end-
of-life phase of a vehicle have been observed to be relatively minor compared with the
operational use phase, and, as a result, they are frequently either overlooked or incorporated
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into the vehicle manufacturing life-cycle aspect [8,84,85]. Generally, a vehicle’s end-of-
life impact (recycling and disposal) has a limited contribution in terms of environmental
impacts [47,70]. In the previous related study for passenger vehicles [17], GHG emission
rates due to disposal were estimated to be only 0.14% and 0.20% of the life-cycle emissions
for ICEVs and BEVs, respectively. Despite the uncertainty, it is clear that emission impacts
regarding end-of-life recycling or disposal processes are trivial.

The input distributions for vehicle recycling and disposal were derived from the
previous study [17] after consideration of the differences in the PV and truck vehicle mass
(Table 2) and lifetime mileage (Section 3.1), and the results are shown in Table 19 for 2019.
It is noted that disposal emission factors are assumed to be the same for BEVs and FCEVs;
these are noted as EVs (electric vehicles).

Table 19. Disposal (D) GHG emission factor (g CO2-e/km) distributions for Australian trucks.

Life-Cycle
Aspect

Vehicle
Technology

LCA Model
Input Variable Distribution Typical

Value
Plausible
Min–Max Value

D MC-ICEV edisposal,ICEV,MCV Uniform, U (0.1, 1.4) 1 0–1
D HC-ICEV edisposal,ICEV,HCV Uniform, U (0.2, 4.1) 2 0–4
D AT-ICEV edisposal,ICEV,AT Uniform, U (0.1, 2.7) 1 0–3
D MC-EV edisposal,EV,MCV Uniform, U (0.1, 1.7) 1 0–2
D HC-EV edisposal,EV,HCV Uniform, U (0.3, 5.6) 3 0–6
D AT-EV edisposal,EV,AT Uniform, U (0.2, 3.3) 2 0–3

It is noted that the impact of disposal is dependent on the extent of recycling of the
vehicle materials, which is already high with end-of-life EU targets stipulating that 85% of
the vehicle mass should be re-used, recovered and recycled [37]. The recycling process at
the end of a vehicle’s life, including the recycling of batteries, will partially offset emissions
generated during the manufacturing process [14]. Another consideration is second-life use
of spent BEV batteries, which was discussed before and which can further decrease the
vehicle’s battery carbon footprint by 50% [7].

The recovery and recycling of materials utilized in BEV batteries have experienced a
notable increase, driven by the elevated costs associated with the raw materials used in
their production [70], which reduces the impact of vehicle manufacturing when recycled
materials are used. Recycling of fuel-cell systems require new methods, but this is consid-
ered feasible [37]. It seems reasonable to assume that future truck disposal practices will
include significant recycling processes and reflect the general decarbonisation of energy
systems, so the reduction factor in 2050 is expected to vary between 10% and 50% of the
2019 values (U: 0.10, 0.50).

4. Results and Discussion

The development and examination of individual parametric input distributions was
discussed in the previous section. In the full probabilistic LCA, all the life-cycle aspects are
combined. Common inputs for different life-cycle aspects (e.g., mass of batteries, fuel-cell
systems, tare vehicle mass, battery capacity) are passed on during the full simulation
(n = 1 million) for the different life-cycle aspects to ensure valid and internally consistent
outcomes. The results of the full simulation are discussed in this section, providing a
probabilistic life-cycle technology assessment for the 18 combinations of truck vehicle class,
powertrain technology and year.

4.1. Average Life-Cycle GHG Emission Factors for Trucks

The simulation results are visualised as PDFs in Figure 3 for 2019 and 2050. Table 20
also presents summary statistics for these distributions, i.e., the average life-cycle emission
factors and the plausible range of these mean values (99.7% CI), which reflects the variability
and uncertainty in the mean values. A PDF is a curve that quantifies the probability that
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the variable of interest falls within a particular range of values. The PDF is non-negative,
and the area under the curve equals one. The position and shape of the distributions
provide information regarding the typical values (e.g., mean, median) and the variability
and uncertainty in these values. A wide distribution suggests a higher level of uncertainty,
whereas a narrow distribution suggests a relatively robust emissions performance.
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It is important to note again that the 2050 scenario is not necessarily restricted to 2050.
It would apply to any current situation where renewable low-carbon energy is used for
the different life-cycle aspects. Examples are the use of solar panels to charge batteries
or the use of grid electricity that is currently generated in Tasmania with almost 95%
renewables [17].

The full life-cycle simulation (Figure 3 and Table 20) shows that the absolute and
relative life-cycle GHG emissions performance depends on the vehicle class, powertrain
and year of assessment. For the recent past scenario (2019), ICE trucks perform best overall,
with average life-cycle GHG emission factors that are 27% (MCV), 19% (HCV) and 96%
(AT) higher for battery electric powertrains due to e.g. the high emission intensity of
electricity generation in 2019, and 12% (MCV), 6% (HCV) and 68% (AT) higher for fuel-cell
electric powertrains.

For the future situation (2050), the picture changes, where BEV and FCEV technology
in combination with the emission intensities of a decarbonised Australian electricity grid
and a mostly green hydrogen-production pathway provide large reductions. Battery
electric powertrains provide large reductions in the average ICEV life-cycle GHG emission
factors of 83% (MCV), 83% (HCV) and 74% (AT). Fuel-cell electric powertrains also provide
substantial reductions, but these are not as large as those for battery electric trucks. FCEV
reduces the life-cycle GHG emission factors for ICEV by 67% (MCV), 68% (HCV) and 47%
(AT), respectively. Although conventional diesel truck technology exhibits improvements
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in operational energy efficiency, they cannot match the strong improvements in the GHG
emissions performance of EVs, and of BEVs in particular.

Table 20. Life-cycle GHG emission factor (g CO2-e/km) statistics.

Vehicle
Class

Powertrain
Technology

Year of
Assessment Mean Median Lower 99.7%

Confidence Limit (mean)
Upper 99.7%

Confidence Limit (mean)

MCV ICEV 2019 714 714 658 773
MCV BEV 2019 909 907 792 1059
MCV FCEV 2019 799 790 603 1139

HCV ICEV 2019 981 981 899 1067
HCV BEV 2019 1171 1167 1011 1380
HCV FCEV 2019 1041 1030 784 1483

AT ICEV 2019 1563 1563 1491 1636
AT BEV 2019 3070 3062 2750 3471
AT FCEV 2019 2627 2623 2166 3239

MCV ICEV 2050 598 597 531 670
MCV BEV 2050 104 102 79 140
MCV FCEV 2050 198 198 123 288

HCV ICEV 2050 806 805 711 908
HCV BEV 2050 141 140 104 192
HCV FCEV 2050 258 258 160 375

AT ICEV 2050 1310 1310 1195 1430
AT BEV 2050 337 331 257 458
AT FCEV 2050 697 697 432 1001

Figure 4 shows the progression in the confidence intervals over time. Generation of
this information is one of the benefits of pLCA: it provides another layer of information
where the uncertainty and the robustness of the absolute results can be assessed.
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decarbonised year, so a white shaded area has been added to highlight that the progression over time
is likely non-linear rather than linear; refer to Section 6).

Figure 4 shows that the uncertainty and spread in the mean life-cycle emission factors
for ICEV is relatively small, which is shown by the relatively narrow band for all vehicle
classes. It also shows that the ICEV truck performance improves with about 5–20% in
the period 2019 to 2050. In contrast, the uncertainty and spread in the mean life-cycle



Sustainability 2024, 16, 762 25 of 38

emission factors for FCEV is relatively large, which is shown by the relatively wide band
for this technology.

In addition, the uncertainty and spread (absolute values, not relative) converges and
is reduced in 2050 compared with 2019. The uncertainty and spread in the mean life-cycle
emission factors for BEV is also relatively small. Similarly to FCEV, the uncertainty and
spread (absolute values, not relative) converges and is reduced in 2050 compared with 2019.

Although the average life-cycle GHG emission factor for diesel trucks (ICEVs) gener-
ally outperforms electric vehicles (BEVs and FCEVs) in 2019, it is the other way around
in 2050. It is important to note that BEVs are expected to perform particularly well in
the 2050 simulation. They show the greatest reductions in the overall emissions perfor-
mance, including a further 45–52% reduction in GHG emissions per kilometre compared
with FCEVs.

In addition, the spread (variability + uncertainty) in the average GHG emissions
performance for BEVs in 2050 is the smallest, varying between 60–201 g CO2-e/km. In
comparison, the range is 139–235 g CO2-e/km for ICEVs and 65–569 g CO2-e/km for
FCEVs. The uncertainty is high for hydrogen trucks due to the propagation of relatively
large uncertainty and variability in the inputs.

This suggests that, out of the three powertrain options, battery electric trucks will
deliver the greatest and most robust emission reductions for all vehicle classes, and therefore
carry the lowest risk of not delivering the anticipated life-cycle emissions performance.
Fuel-cell electric hydrogen trucks, on the other hand, will also reduce emissions compared
with ICE trucks, but these reductions are not as great, and, relevantly, they are the least
robust of all the technology options. They therefore carry the highest risk of potentially not
achieving the expected reductions.

4.2. The Relevance of Different Life-Cycle Aspects

The simulation results can be examined to assess the relative importance of the differ-
ent life-cycle aspects for the total GHG emission rates. Each one of the million simulations
for each of the 18 combinations of vehicle class, powertrain category and year of assess-
ment will result in different shares of the five life-cycle aspects. The results are therefore
presented in terms of summary statistics and visualised with box plots.

Table 21 presents the summary statistics for these distributions, i.e., the lower and
upper confidence limits of the average percentage contribution to the life-cycle GHG emis-
sion rates for each life-cycle aspect. Figures 5 and 6 show the life-cycle emission results for
the so-called “vehicle cycle” (manufacturing + disposal) and “fuel cycle” (infrastructure +
fuel/energy+ operational) in box plots. Appendix B includes similar plots for the individual
life-cycle aspects.

It is clear from Table 21 and Figures 5 and 6 that operational emissions (on-road
driving and vehicle maintenance) dominate the life-cycle emissions for all vehicle classes,
powertrain categories and years, with average contributions varying from 53% (HCV, BEV,
2050) to 93% (AT, ICEV, 2050). In contrast, disposal and recycling make negligible to small
contributions, varying on average from 0.03% (AT ICEV 2050) to 0.63% (HCV BEV 2050).

Vehicle manufacturing makes a relatively small contribution to life-cycle emissions
from ICEVs, on average between approximately 1% to 5%. For BEVs and FCEVs, this is
significantly higher, typically in the order of 5% to 20% and 5% to 25%, respectively.

The contribution of infrastructure-related emissions to life-cycle emissions was typi-
cally small for ICEVs (less than 1%) and were slightly higher for BEVs and FCEVs in 2019
(typically 2–3%). The contribution of infrastructure-related emissions for BEV and FCEV
increases significantly in 2050 (10–25%), but this shift is mainly caused by a large drop in
the life-cycle emission rates for these technologies. Finally, upstream emissions due to the
production of fuels and energy typically make up 6% of the life-cycle emissions for ICE
trucks. For battery electric trucks, this is slightly higher, with typical contributions of 6–9%,
and this is more variable for fuel-cell electric hydrogen trucks, with typical contributions
of 3–10%.
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Finally, Figures 7 and 8 repeat the life-cycle emission factor distributions presented in
Figure 2 (Section 4.1), but this time, the distributions are also split into the main life-cycle
aspects assessed in this study, i.e., the “vehicle cycle” aspects (vehicle manufacturing and ve-
hicle disposal/recycling) and three “fuel cycle” aspects, namely fuel/energy infrastructure,
fuel/energy upstream and operational (on-road and maintenance) emissions.

Table 21. Mean and plausible range (99.7% CI, within brackets) of the percentage share of the life-cycle
GHG emission factor (g CO2-e/km) for each life-cycle aspect by vehicle class, powertrain technology
and year.

Vehicle
Class

Powertrain
Technology

Year of
Assessment

Vehicle
Manufacturing

Upstream
Infrastructure

Upstream
Fuel and
Energy

Operational
(on-Road +

Maintenance)

Disposal and
Recycling

MCV ICEV 2019 2.5 (1.7–3.4) 0.5 (0.1–0.9) 6.0 (4.1–7.9) 91.0 (88.6–93.5) 0.1 (0.0–0.2)
MCV BEV 2019 7.4 (3.1–15.6) 2.3 (0.5–4.4) 8.5 (6.9–10.4) 81.6 (74.0–86.8) 0.1 (0.0–0.2)
MCV FCEV 2019 20.5 (6.1–44.3) 2.7 (0.5–5.6) 8.1 (4.3–13.0) 68.6 (47.7–83.3) 0.1 (0.0–0.3)

HCV ICEV 2019 5.3 (3.6–7.3) 0.4 (0.1–0.8) 5.8 (3.9–7.7) 88.2 (85.2–91.2) 0.2 (0.0–0.4)
HCV BEV 2019 11.4 (5.7–21.2) 2.2 (0.4–4.2) 8.2 (6.5–10.1) 78.0 (69.1–84.0) 0.3 (0.0–0.5)
HCV FCEV 2019 24.3 (9.4–47.1) 2.5 (0.5–5.3) 7.8 (4.1–12.4) 65.2 (45.1–80.0) 0.3 (0.0–0.7)

AT ICEV 2019 2.2 (1.6–2.8) 0.5 (0.1–0.9) 6.0 (4.1–7.9) 91.2 (88.9–93.7) 0.1 (0.0–0.2)
AT BEV 2019 4.7 (1.8–9.5) 2.4 (0.5–4.5) 8.8 (7.3–10.7) 84.0 (79.1–88.0) 0.1 (0.0–0.1)
AT FCEV 2019 8.6 (2.8–21.9) 2.8 (0.6–5.7) 9.5 (5.6–14.2) 79.1 (66.4–87.7) 0.1 (0.0–0.1)

MCV ICEV 2050 0.9 (0.2–2.0) 0.5 (0.1–0.9) 6.1 (4.1–8.0) 92.5 (89.9–95.2) 0.0 (0.0–0.1)
MCV BEV 2050 13.1 (5.1–23.7) 21.3 (8.4–39.3) 6.9 (1.1–15.6) 58.4 (43.6–73.3) 0.3 (0.0–0.9)
MCV FCEV 2050 10.8 (3.0–30.1) 11.6 (3.6–27.6) 3.5 (1.7–6.6) 74.0 (52.5–87.6) 0.1 (0.0–0.5)

HCV ICEV 2050 2.0 (0.4–4.4) 0.5 (0.1–0.9) 6.0 (4.1–8.0) 91.4 (87.9–94.8) 0.1 (0.0–0.2)
HCV BEV 2050 20.8 (8.1–35.4) 19.6 (7.5–37.6) 6.4 (1.0–14.5) 52.6 (38.5–68.7) 0.6 (0.0–2.1)
HCV FCEV 2050 14.8 (4.3–34.9) 11.1 (3.5–26.5) 3.4 (1.7–6.3) 70.4 (48.9–85.7) 0.4 (0.0–1.3)

AT ICEV 2050 0.8 (0.2–1.7) 0.5 (0.1–0.9) 6.1 (4.2–8.0) 92.6 (90.0–95.2) 0.0 (0.0–0.1)
AT BEV 2050 8.3 (2.4–17.7) 23.5 (9.5–42.4) 7.7 (1.2–17.1) 60.4 (44.4–76.1) 0.2 (0.0–0.5)
AT FCEV 2050 4.6 (1.2–13.1) 11.9 (3.7–28.5) 3.9 (1.9–7.4) 79.6 (61–90.5) 0.1 (0.0–0.3)
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These charts visualise and summarise important findings from this study:

• First, it is clear that life-cycle emission factor distributions for trucks vary widely in
magnitude, range and shape. They all depend on the year of assessment, truck vehicle
class and powertrain technology.

• Second, any cost-effective emission reduction policies would naturally favour truck
types that have narrow life-cycle GHG emissions distributions, which are as close
to zero emissions as possible. They represent the maximum potential for emissions
reduction and are the most robust and least uncertain technology choice. Whereas
diesel trucks appear to have had the best life-cycle emissions performance in 2019, the
situation is the inverse in 2050 (or in a more decarbonised situation). The simulation
suggests that battery electric trucks are expected to achieve the greatest and most
reliable and robust reductions in life-cycle GHG emissions.

• Third, the contribution of different life-cycle aspects is quite different, and this is
particularly clear when diesel trucks are compared with electric trucks.

4.3. Comparison to Other Studies

The sixth IPCC Assessment Report [20] delivers a comprehensive review of GHG
life-cycle transport emission intensities for road freight. IPCC [20] presents the results
for medium-duty trucks (MDT) and heavy-duty trucks (HDT), with a 50% payload each.
To compare these with the results from this study, the life-cycle GHG emission estimates
were normalised for payload (Table 2). It is noted, however, that the results can only be
compared in a general manner. For instance, the IPCC data for ICEVs were not organised
as present (~2019) and future (~2050), but rather reflect differences in vehicle characteristics
and operating efficiencies reported in the scientific literature.

In a general sense, the range of life-cycle emissions for freight trucks normalised for
payload align well with the plausible range determined in this study. In both studies, the
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emission intensities for electric trucks (BEVs and FCEVs) similarly tend to have the lowest
values when based on a renewable energy supply.

Two main differences become clear after an examination of Figure 9, when this study
is compared with the IPCC [20]:

• First, this study estimates low emission intensities (per tonne km) for heavy articu-
lated trucks (AT), but it is unclear if these heavy vehicles were included in the IPCC
data. Medium-duty trucks (MDT, Figure 9) in IPCC [20] refer to the US American
classification for trucks with gross vehicle masses between 7 tonnes and 13 tonnes,
while heavy-duty trucks (HDT) refer to trucks with vehicle masses > 16.5 tonnes [86].
In this study, articulated trucks are defined as trucks > 25 tonnes, and the AT modelled
in this study has a gross vehicle mass of 90 tonnes (Table 2).

• Second, this study estimates a significantly wider plausible range in the life-cycle
emissions performance of hydrogen trucks (FCEV), whereas the IPCC estimates quite
a narrow range. This is an interesting result. Our study suggests that the elevated
uncertainty in several life-cycle aspects for FCEVs can produce the highest emission
intensities for all technology classes.
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trucks from this study (top) compared to the literature data reviewed by IPCC [20] (bottom), where
MDT = Medium-Duty Trucks and HDT = Heavy-Duty Trucks, with MDT and HDT data for 50%
payload each. Red = ICEV, Green = BEV, Blue = FCEV.

5. Conclusions

This probabilistic LCA research study for trucks finds that the relative and absolute
life-cycle GHG emissions performance strongly depends on the vehicle class, powertrain
and year of assessment (reflecting the energy mix). In fact, the life-cycle emission factor
distributions for trucks vary widely in magnitude, range and shape. They all depend on
the year of assessment, truck vehicle class and powertrain technology.

The study has generally been conservative in the assessment of electric-vehicle tech-
nology options (e.g., not including the use of solar panels to charge batteries by truck
operators). Importantly, LCA impacts have been assessed for two stationary situations,
i.e., 2019 and a future decarbonised situation (10% fossil fuels). Important processes that
affect life-cycle emissions, such as decarbonisation of the electricity grid, are, however,
time-dynamic processes. The lifetime of trucks spans several decades, which means that a
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time-dependent (e.g., year-by-year) simulation of certain LCA aspects (operational and up-
stream emissions in particular) would provide a more accurate assessment of the life-cycle
emissions performance and would likely be of significant benefit to the LCA performance
of electric vehicles (refer to Section 6).

For the recent past situation, the modelling suggests that diesel trucks have the lowest
life-cycle GHG emissions due to the high carbon-emission intensity of the Australian elec-
tricity grid (mainly coal) and of hydrogen production (mainly steam–methane reforming).
The picture is, however, very different for a more decarbonised situation, where battery
electric trucks, in particular, provide large reductions (about 75–85%) in the life-cycle GHG
emissions. Fuel-cell electric (hydrogen) trucks also provide substantial reductions (about
50–70%), though not as large as those for battery electric trucks. Battery electric trucks are
expected to perform particularly well in the decarbonised simulation, showing the greatest
reductions in life-cycle emissions, including a further 45–50% reduction in GHG emissions
per kilometre compared with hydrogen (fuel-cell) trucks.

The pLCA also provides useful information on the robustness and uncertainty in
these results. The life-cycle GHG emission performance of hydrogen trucks has the largest
uncertainty of all the powertrains considered, which reflects the uncertainty and general
lack of information for this technology. They therefore carry a high risk of potentially
not achieving the expected emission reductions. Battery electric trucks show the smallest
uncertainty in the average GHG life-cycle emissions in the decarbonised situation, with
a spread in emission factors varying between 60–201 g CO2-e/km. In comparison, the
spread or range is 139–235 g CO2-e/km for diesel trucks and 65–569 g CO2-e/km for
hydrogen trucks, as predicted for 2050. This suggests that, out of the three powertrain
options, battery electric trucks are expected to deliver the largest and most robust emission
reductions for all vehicle classes, as long as the electricity mix is largely generated from
renewables. They carry the lowest risk of not delivering the anticipated reductions in
life-cycle GHG emissions.

In terms of the contributions of different life-cycle aspects to the GHG emissions
performance, operational emissions (on-road driving and vehicle maintenance) dominate
the life-cycle emissions for all vehicle classes, powertrain categories and years. However,
their relative contribution varies substantially from about 50–60% for battery electric trucks
to over 90% for diesel trucks in the (future) decarbonised situation. Disposal and recycling
make a negligible contribution to all technology classes (<1%). Vehicle manufacturing
makes a relatively small contribution to life-cycle emissions for diesel trucks (<5%) but
is an important aspect for electric trucks (5% to 25%). Upstream emissions (fuel and
infrastructure) make up the remainder, contributing about 5% to total life-cycle emissions
for diesel trucks and 10–30% for electric trucks. Note that high contribution rates are mainly
caused by a large drop in the total life-cycle emission rates for electric trucks.

6. Recommendations for Future Work and Refinement

Update the modelling at regular intervals—This LCA research study made use of the best
available information to assess the “fleet-average” life-cycle performance of three typical
truck sizes and three powertrains. It will be important to update these results once new
information comes to light.

Expand the scope of assessment—Some aspects were not yet included due to a lack of
information (e.g., impacts of re-engining diesel trucks) or the restricted scope of the study,
and it is recommended to include these in the future. Some technologies such as catenary
trucks, direct hydrogen combustion trucks, hybrid trucks and e-fuel trucks have not been
included in this study and may be of interest in future work. Further refinement of the
truck classification would lead to a more detailed assessment of life-cycle emissions. Con-
sideration of other life-cycle assessment variables in the probabilistic assessment, such as
cost, the combination of costs and emissions (cost-effectiveness), impacts of road infras-
tructure building and maintenance, and specific aspects, such as the specific constraints
on technology availability, would provide useful information. It would also be useful to
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apply the pLCA method to specific makes/models of trucks (rather than the fleet-average
performance, which was the focus of this paper) to explore the life-cycle performance and
its variability and uncertainty in specific case studies.

Increase the time resolution of the simulation—It would be useful to repeat the assessment
for intermediate years (e.g., 2030, 2040) to determine the non-linear trajectory of life-cycle
emissions for the different vehicle classes and powertrains. In addition, a simulation of
life-cycle emissions year-by-year would give a more accurate assessment and would likely
be of significant benefit to the life-cycle emissions performance of electric vehicles due to
the rapidly improving emission intensity of electricity generation and hydrogen production,
as well as improved system durability.
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Glossary of Terms

ABS Australian Bureau of Statistics
AFM Australian Fleet Model
AT Articulated truck
B Non-standard beta distribution
BE(V) Battery electric (vehicle)
CDF Cumulative distribution function
CI Confidence interval
D Dirac Delta function
eICEV, eBEV, and eFCEV Life-cycle GHG emission factor
E Exponential distribution
EV Electric vehicle
G Gamma distribution
GHG Greenhouse gas
GWP Global-warming potential
GVM Gross vehicle mass
FC Fuel consumption
FCE(V) Fuel-cell electric (vehicle)
HCV Heavy commercial (rigid) vehicle
HDT Heavy-duty truck
HDV Heavy-duty vehicle
HEV Hybrid electric vehicle
ICE(V) Internal combustion engine (vehicle)
IPCC Intergovernmental Panel on Climate Change
L Lognormal distribution
LCA Life-cycle assessment
MCV Medium commercial (rigid) vehicle
MDT Medium-duty truck
N Normal distribution
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NGA National greenhouse accounts (factors)
PHEV Plug-in hybrid electric vehicle
pLCA Probabilistic LCA
PDF Probability density function
PV Passenger vehicle
QQ Quantile–quantile (plot)
RSE Relative standard error
SOC State of charge
SCR Selective catalytic reduction
SMR Steam–methane reforming
SMVU Survey of Motor Vehicle Use
T Triangular distribution
U Uniform distribution
VKT Vehicle kilometres travelled
W Weibull distribution

Appendix A

Table A1. Distribution definitions.

Name Range Parameters Probability Density Function (PDF)

Uniform—U(x:a,b) a ≤ x ≤ b a: Minimum, −∞ < a < b
b: Maximum, a < b < −∞

1
b−a

Triangular—T(x:a,b,c) a ≤ x ≤ b
a: Minimum, −∞ < a < b
b: Maximum, a < b < −∞
c: Mode, a ≤ c ≤ b


2(x−a)

(b−a)(c−a) , x ≤ c
2(b−x)

(b−a)(c−a) , x > c

Normal—N(x:m,s) −∞ ≤ x ≤ +∞
m: Mean, −∞ < m < ∞
s: Standard deviation,
0 < s < ∞

1√
2πs

exp
(
− 1

2s2 (x − m)2
)

Lognormal—L(x:m,s) 0 ≤ x ≤ +∞ m: Log-mean, −∞ < m < ∞
s: Scale, 0 < s < ∞

1
x
√

2πs
exp

(
− 1

2s2 (ln(x)− m)2
)

Weibull—W(x:s,k) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞
k: Shape, 0 < s < ∞

k
s
( x

s
)k−1exp

(
−
( x

s
)k
)

Gamma—G(x:s,k) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞
r: Rate, 0 < s < ∞

rs

Γ(s) xs−1exp(−rx)

Exponential—E(x:s) 0 ≤ x ≤ +∞ s: Scale, 0 < s < ∞ rexp(−rx)

Non-Standard
Beta—B(x:s,k,a,b) a ≤ x ≤ b

s: Scale, 0 < s < ∞
k: Shape, 0 < k < ∞
a: Minimum, −∞ < a < b
b: Maximum, a < b < −∞

Γ(s+k)
Γ(s)Γ(k)

(
x−a
b−a

)s−1(
1 − x−a

b−a

)k−1

Skew t—S(x:m,s,a,d) −∞ ≤ x ≤ +∞

m: Mean, −∞ < m < ∞
s: Scale, 0 < s < ∞
a: Skew, 0 < a < ∞
d: Degrees of freedom,
0 < d < ∞

2t(x : m, s, d)T
(

az
√

d+1
d+z2 : 0, 1, d

)
,

where

t(x : m, s, d) =
Γ( 1

2 (d+1))
√

πd1
2 d

(
1 +

( x−m
s

)2
)− v+1

2

z = (x − m)/s), and T(x : m, s, d)
is the cumulative distribution function.

Dirac Delta—D(x:m) −∞ ≤ x ≤ +∞
Practically x = m m: Location, −∞ < m < ∞

{
∞, x = m
0, x ̸= m

Appendix B

The following box plots show the percentage contribution of different LCA aspects of
life-cycle GHG emissions.
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