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A B S T R A C T   

This study analyses the results from an Australian ship survey and evaluates the performance of the Maritime 
Transport Emission Model (MTEM) that uses detailed data on local ship movement (Automatic Identification 
System) and ship characteristics. The model is designed to make accurate predictions at fleet level. The survey 
collected comprehensive information for 172 vessels in 2019, mainly bulk carriers, which dominate the 
Australian fleet. At fleet level and using default model settings, fuel consumption in transit and stationary (at 
berth) operating conditions are predicted with an error of 12% and 6%, respectively. For individual vessels, 
model predictions are significantly less reliable, which confirms that MTEM should be used for its intended 
purpose and estimate emissions at fleet level in regional areas. In transit conditions, the 95% confidence interval 
for fuel use prediction errors lies between about − 50% and +75%. In stationary conditions, at berth, prediction 
errors can be larger, but the results suggest that these errors cancel each other out at fleet level, resulting in 
satisfactory overall model performance. Reported sulphur content in marine fuels confirms that the default 
emission factor for sulphur dioxide is still a reasonable estimate.   

1. Introduction 

International shipping is critical for global trade. IMO (2018) reports 
that more than 80% of the volume of international trade in goods is 
transported by sea by over 90,000 commercial ships with a combined 
weight of 1.86 billion dead weight tonnes. 

Shipping is a significant source of air pollution and greenhouse gas 
emissions. Ocean-going Vessels (OGVs) have long service lives and 
generally use large diesel engines that run on heavy bunker fuels, 
traditionally without emission controls. Annually, international ship-
ping is responsible for approximately 13% and 12% of global nitrogen 
oxides (NOx) and sulphur oxides (SOx) emissions respectively (IMO, 
2018). Several studies have reported substantial effects on local air 
quality in and around port areas (e.g. Saxe and Larsen, T., 2004; Agrawal 
et al., 2009; EEA, 2013; Viana et al., 2014; Broome et al., 2016; Monteiro 
et al., 2018; Smit and Khan, 2019; Contini and Merico, 2021). Green-
house gas emissions from the shipping industry have become increas-
ingly important (Cullinane and Cullinane, 2013). According to IMO 
(2018), maritime transport emits around 1 billion tonnes of carbon di-
oxide annually and is responsible for approximately 3% of global 
greenhouse gas emissions from fuel combustion. Shipping is forecast to 
grow as international trade grows. The shipping sector is expected to 

increase its CO2 emission contribution from 3% in 2007 to 18% in 2050 
if no action is taken (IEA Bioenergy, 2017). 

To assess the impacts of shipping on greenhouse gas emissions and 
local air quality, an Australian ship (exhaust) emission model (Maritime 
Transport Emission Model, MTEM) was initially developed in 2019 
(DES, 2019). It uses detailed data on local ship movements, 
high-resolution terrestrial or satellite Automatic Identification System 
(AIS) data and information regarding relevant ship characteristics. 
MTEM estimates fuel use and subsequently uses fuel-based emission 
factors (g/kg fuel) to estimate air pollutant and greenhouse gas emis-
sions. The model is based on extensive literature review and model 
parameters were calibrated for the Australian fleet using an energy 
balance approach (Smit and Khan, 2019), as will be discussed later. A 
comparison with other ship emission models is provided in Section 2.3. 

There are various ways to measure real-world ship emissions and 
validate a ship emissions model, including on-board emissions testing, 
laboratory engine test beds and mobile or stationary plume measure-
ments (e.g. Jayaram et al., 2011; Lack et al., 2011; Westerlund et al. 
2015, Chu-Van et al., 2018; Grigoriadis et al., 2021). The US EPA (2022) 
states that vessel surveys can also provide useful data for estimating 
emissions. In this study, we have analysed the results from a vessel 
survey conducted by the Australian Maritime Safety Authority (AMSA) 
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with the aim to assess MTEM performance. Another study has examined 
the performance of the same model but by using a different method; 
on-board emissions testing (Smit et al., 2022). 

2. Method 

2.1. AMSA vessel survey 

The Australian Maritime Safety Authority (AMSA) conducted a 
voluntary survey to collect operational data relevant for ship emissions 
in Australian waters. The full survey is included in the Supplementary 
Material (SM1). The survey consisted of 42 detailed questions and data 
were provided for 172 vessels for the period January 2019 to July 2019. 
The survey was promulgated via the AMSA website and by AMSA sur-
veyors during ship inspections and targeted all ships types and all 
Australian ports. The survey was also promoted by the peak maritime 
industry bodies – Maritime Industry Australia Limited (MIAL) and 
Shipping Australia Limited (SAL). 

Ships masters were given a survey to complete in their own time. 
Ships could fill the survey in via SurveyMonkey or hard-copies and re-
turn to the AMSA surveyor or via email. The completed surveys were 
reflective of the variety of different ship types that visit or operate in 
Australian waters. Bulk carriers are the dominant ship type arriving in 
Australian ports and the majority of surveys were completed by ships 
arriving at bulk commodity ports, such as Port Hedland, Newcastle and 
Hay Point. 

The survey data were complemented with detailed ship information. 
This ship information was used to verify survey data and to plug data 
gaps. In addition, the survey data were extensively checked for consis-
tency and typos were rectified. Unrealistic data entries were removed 
and marked as missing values. For main engine fuel use in transit con-
ditions, 12 surveyed vessels reported unrealistically high fuel use (>200 
tonne/day) at rated engine power <20 MW. One vessel with a rated 
engine power of 40 MW reported an unrealistically low fuel use (32 
tonne/day). Of the 172 vessels in the survey, these 13 vessels (8%) were 
identified as having invalid data entries and were removed, as will be 
discussed later. For self-reported fuel use at berth, one vessel reported an 
unrealistic 800 tonne/day in the survey and was removed. 

2.2. Maritime transport emission model (MTEM) 

MTEM is an energy-based ship (exhaust) emissions model. Full A 
detailed discussion of the model foundations can be found in DES (2019) 
and Smit and Khan (2019). Table 1 presents the general structure of the 
fuel consumption algorithms used in the ship emission model for moving 

ships and stationary ships. It is noted that separate algorithms are used 
for auxiliary engines in manoeuvring conditions, which are defined as 
<20% Maximum Continuous Rating (MCR). They are not shown in 
Table 1 as the survey did not collect sufficient information related to 
manoeuvring conditions. The calibrated model parameters by ship type 
are included in the Supplementary Material (SM2). 

Real-world fuel consumption depends on energy demand. However, 
energy requirements on-board a ship can vary significantly over time 
and is therefore challenging to quantify accurately for specific vessels 
and for different combustion systems on-board. Nevertheless, a 
reasonable and feasible approach is required for emission estimation in 
large areas and over longer periods of time (months to years). MTEM is 
based on generic empirical relationships published in previous research 
(Georgakaki et al., 2005; Hulskotte and Denier van der Gon, 2010). 
These functions were expanded and then re-calibrated using an 
energy-balance approach, as will be discussed shortly. 

The use of generic functions for shipping fleets in regional areas and 
substantial periods of time (e.g. one to several years) allows for fast and 
cost-effective estimation of ship emissions without the need to consider 
individual ship characteristics. Collection and processing of individual 
ship information can be a costly and time-consuming part of a ship 
emissions inventory. The approach is warranted as prediction errors for 
individual vessels tend to offset each other and average out, leading to 
robust and reliable emission predictions at fleet level. 

However, to better reflect local fleet composition, a ship energy- 
balance approach was developed to calibrate the model parameters of 
the empirical functions (Table 1). This is an optional feature of MTEM 
and it was, for instance, used to properly reflect the Ocean-going vessel 
fleet operating in Australian waters (DES, 2019; Smit and Khan, 2019). 
AIS data were analysed to identify which specific vessels (IMO/MMSI 
numbers) were operating in the area. Plausible ranges in ship energy use 
and verification points in the energy balance were defined through 
literature review and analysis of a database with vessel specific infor-
mation. This included consideration of, for instance, MCR values, service 
speeds, ratios of installed auxiliary engine power to MCR and engine 
load factors by type of engine. 

A representative and service speed adjustable speed-time profile, 
including all modes of operation (cruising, manoeuvring, berth, anchor), 
was used in a simulation to estimate minute-by-minute fuel use for over 
5000 vessels. Simulated fuel use was subsequently converted to energy 
use (kW) for each type of combustion system (main engine, auxiliary 
engines, auxiliary boilers) using information on fuel type, fuel-specific 
lower heating values and engine and fuel type dependent thermal effi-
ciency values. A robust linear regression model (RLM), which is less 
sensitive to outliers than conventional linear regression, was fitted to the 
simulated energy use for all vessels of a particular type. This fitted 
regression function was then used to re-calibrate function parameters for 
each type of ship and achieve an optimum fit to the fleet average veri-
fication points with a minimum overall prediction error. The parameter 
calibration process can be repeated for other regional or local areas. 

Typical fuel consumption rates are predicted for different ship classes 
and for four modes of operation: ‘transit’, ‘manoeuvring’, ‘berth’ and 
‘anchor’. The main OGV types considered in the model are: ‘bulk car-
rier’, ‘container’, ‘cruise ship’, ‘general cargo’, ‘reefer’, ‘roro’ (roll-on- 
roll-off), ‘tanker (oil)’, ‘tanker (other)’, ‘vehicle carrier’ and ‘other’. Ship 
engine type is defined as: 1) main engine (ME), auxiliary engine (AE) 
and boiler (BL), 2) slow speed (SS), medium speed (MS) and high speed 
(HS) diesel engines, or gas/steam turbines (GAS/STM), and 3) Interna-
tional Convention for the Prevention of Pollution from Ships (MARPOL) 
Annex VI NOx emission certification limits. The last category relates to 
year of vessel construction, i.e. ‘pre-control’ (<2000), ‘Tier I’ 
(2000–2010), ‘Tier II’ (2011+) and ‘Tier III’ (2016+). Tier III is only 
relevant for NOx-emission control areas (ECAs), which do not exist in 
Australia. More specifically, it applies to the North American ECA and 
the Baltic/North Sea ECA. 

Marine fuel oils are broadly classified as (intermediate) residual fuel 

Table 1 
General structure of fleet-average fuel consumption prediction algorithms in 
MTEM.  

Fuel consumption variable Algorithm 

Main engine (kg) φ1a Sb Δd pi (ν/νss)
3 

Auxiliary engine in transit conditions (kg) φ1φ2a Sb Δd pi 

Auxiliary engine in stationary conditions 
(kg) 

(ψ d SΔt − fb) pi with ψ =

e (τ η d S Δt)f− 1 

Auxiliary boiler (kg) (φ33.6 cSΔt) /(τ η )

S = vessel size or volume, expressed as gross tonnage (GT); Δd = total distance 
traversed by the ship (km); Δt = time resolution (h); ν = actual (average) vessel 
speed (km/h); νss = vessel service speed (km/h); η = boiler thermal efficiency, 
ratio (− ); τ = fuel specific lower heating value (MJ/kg); a = model parameter – 
function of ship class (kg/km); b = model parameter – function of ship class (− ); 
c = model parameter – function of ship class (kW/GT); d = model parameter – 
function of ship class (kg/GT.h); e = model parameter (1/MJ); f = model 
parameter (− ); φ1 = main engine calibration factor (− ); φ2 = auxiliary engine 
calibration factor (− ); φ3 = boiler calibration factor (− ); pi = proportion of total 
fuel used by machinery/fuel type I (− ); ψ = calibration function (− ); fb =
auxiliary boiler fuel consumption (kg). 
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oil (RO), marine distillates (MD) and ultra-low sulphur diesel (ULSD). 
MTEM uses fuel-based emission factors (g of pollutant per kg of fuel 
burned) for air pollutants and greenhouse gases based on a review and 
analysis of published research reports and scientific papers (e.g. Agrawal 
et al., 2008; Moldanová et al., 2010; Coggon et al., 2012; Zhang et al., 
2014; Celo et al., 2015; Pongpiachan et al., 2015; Goldsworthy and 
Goldsworthy, 2015; Grigoriadis et al., 2021). They include CO2, NOx, 
SO2, PM10, PM2.5, VOCs, CH4, N2O, Pb, As, Ni, V, Mn, Cd, PAHs (sum), 
benzo(a)pyrene, 1,3-butadiene, benzene, formaldehyde, toluene, xy-
lenes and ethylbenzene. The emission factor values are a function of 
engine system (ME, AE, BL), engine type (SS, MS, HS, GAS, STEAM), fuel 
type (RO, MD, ULSD) and MARPOL Annex VI emission certification limit 
(NOx only). 

In model application, these emission factors are combined with es-
timates of fuel consumption for each minute of individual ship activity, 
which is obtained from AIS data. These AIS data undergo elaborate post- 
processing and verification to ensure realistic speed-time data are used 
as input to emissions modelling (Smit et al., 2022). This is carried out for 
all individual ships that operate in the area of interest in a selected base 
year, resulting in emission predictions at a high temporal and spatial 
resolution. Ship emission predictions are then aggregated to estimate 
total emission loads at grid cell level (for instance 1 × 1 km) for each 
hour of the year to allow for visual presentation of the data in maps and 
to create emission input data for atmospheric dispersion and chemistry 
models. 

2.3. Comparison with international ship emission estimation methods 

MTEM has several communalities in its approach compared with 
other international methods. For example, in terms of ship classification 
engine speed category, fuel type and emission control standard are 
explicitly modelled (Grigoriadis et al., 2021), but also ship type, engine 
type and mode of operation (Goldsworthy and Goldsworthy, 2015; 
EMEP/EEA, 2016, 2021; CARB, 2022). 

Although ship emission inventories traditionally used generic in-
formation and statistics on ship movements (e.g. Corbett and Koehler, 
2003; Endresen et al., 2003), AIS data are now commonly used in the 
development of emission inventories (e.g. Yau et al., 2012; Jonson et al., 
2015; Liu et al., 2016) and regarded as best practise (IMO, 2018; 
EMEP/EEA, 2021; US EPA, 2022). However, a critical aspect is that AIS 
data cannot be used directly. The data requires post-processing (data 
cleaning, imputation, statistical smoothing) to enable proper use in 
emission inventories and poses its own challenges (Ng et al., 2013; Smit 
et al., 2022). Emmens et al. (2021) provide a detailed examination of the 
strengths and weaknesses of AIS data. 

In other aspects the approach can be slightly different. For example, 
MTEM first estimates fuel use (kg/min) as a function of ship operating 
conditions (engine load, operating mode) and subsequently estimates 
greenhouse gas and air pollutant emissions using fuel-based emission 
factors (g/kg fuel). In comparison, Grigoradis et al. (2022) used separate 
emission algorithms for each air pollutant, where emissions are 
expressed as mass of pollutant per unit of energy produced by the en-
gine. The base emission factors (g/kWh) are constant but vary with 
engine, fuel and emission control and are modified according to oper-
ational engine load. Ship emission inventory methods used in the USA 
(CARB, 2022; US EPA, 2022) similarly use emission factors expressed as 
g/kWh and operational engine load is typically estimated by combining 
(default or propellor/admiralty law derived) load factors with 
vessel-specific rated engine power. The European Emission Inventory 
Guidebook (EMEP/EEA, 2016, 2021) offers both options (fuel-based or 
load-based emission factors) for its most detailed Tier 3 emission in-
ventory method. 

MTEM uses fuel-based emission factors that are constant across a 
range of power settings, except for low power conditions <20% MCR 
(for instance during manoeuvring) where emission factors increase. On- 
board emissions testing (Smit et al., 2022) has shown that this approach 

agrees with observed emissions behaviour in some cases, but not for all 
ships where the power - emission factor relationship can exhibit a 
different shape. However, significantly more emissions testing would be 
required to confirm if the current approach needs to be modified. 

In addition to established methods (e.g. EMEP/EEA, 2021; US EPA, 
2022) other ship emission models are available. For instance, Jalkanen 
et al. (2009, 2012, 2014) developed a power-based ship emission models 
called STEAM and STEAM2 (Ship Traffic Emission Assessment Model). 
The model uses an internal database with specific technical information 
for a large number of vessels, which includes ship engine data, fuel mix, 
abatement techniques, as well as fuel use rates and emission factors. 
Although, detailed vessel information is used to calibrate MTEM to 
reflect the regional shipping fleet, MTEM is less complex than STEAM in 
its application as it uses generic prediction functions for different ship 
types. 

3. Results 

3.1. General survey results and vessel characteristics 

The survey data were collected in 21 ports across Australia with 11% 
of surveys conducted in New South Wales (Sydney, Newcastle, Port 
Kembla), 5% in Victoria (Melbourne, Geelong, Point Wilson), 39% in 
Queensland (Abbot Point, Dalrymple Bay, Gladstone, Hay Point, 
Mackay, Townsville), 42% in Western Australia (Dampier, Fremantle, 
Geraldton, Kwinana, Port Hedland, Port Walcott), 2% in Tasmania (Bell 
Bay) and 1% in the Northern Territory (Darwin). 

Survey vessel characteristics are presented in distribution charts in 
the Supplementary Material (SM3). 

The majority (84%) of surveyed ships classify as bulk carrier 
(Figure SM 3.1) with smaller proportions between 1% and 3% for other 
ship types. This reflects the fleet composition in Australian waters. For 
instance, of the more than 5000 vessels used in the MTEM energy cali-
bration step, about 70% were bulk carriers (SM3). 

In terms of vessel size, the distributions of vessel length and gross 
tonnage (GT) are shown SM3. 

The mean and median vessel length of the surveyed vessels is 250 
and 254 m, respectively. The mean and median gross tonnage (GT) of 
the surveyed vessels is 68,152 and 58,356, respectively. The mean and 
median year of manufacture of the surveyed vessels is both 2011. The 
distribution by year of manufacture suggests that only 5 vessels qualify 
as pre-control (3%), the majority is Tier I (53%) and the remainder Tier 
II/III (44%). The survey requested information on engine NOx certifi-
cation and the results show 45% Tier I, 35% Tier II, 4% Tier III and 15% 
with no answer. 

The Maximum Continuous Rating (MCR), which is equivalent to 
maximum installed (main) engine power, varies between 3900 and 
68,590 kW, with a mean and median value of 14,621 and 15,131 kW, 
respectively (SM3). The main engines that propel ocean-going vessels 
are primarily powered by slow (SS, 2-stroke, typically GT ≥ 2500 and 
≤150 RPM) and medium speed diesel (MS, four-stroke, typically GT <
2500 and 150–1000 RPM) engines that combust residual oil (RO) or 
marine distillate (MD). Most surveyed ships (94%) have a single slow 
speed main engine. The remaining 6% have one to six medium speed 
engines. 

The conventional engine configuration is one or more main engine(s) 
and two or more auxiliary engines, with either direct coupling (no gear) 
to the propeller for large slow-moving engines, or geared drive with a 
gearbox between the smaller medium-speed engine and propeller to 
reduce propeller velocity. Of the surveyed ships, the majority (about 
90%) have direct drive main diesel engines and less than 5% have 
geared drive main diesel engines. Ships with limited space or highly 
variable operation and power requirements such as large passenger 
ships typically use diesel-electric systems and less than 10% of surveyed 
ships fall into this category. 

Auxiliary engines are typically used for electric power production 
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when the main engine is shut down and an auxiliary boiler (if present) 
generates steam. The main engine is generally switched off when ships 
are at berth or at anchorage, except for diesel-electric ships, where 
auxiliary power is generated with the main engines. The surveyed ships 
typically have two to five auxiliary engines installed. 

Fig. 1 shows the relationship between rated main engine power 
(MCR) and total installed auxiliary engine power for bulk carriers. The 
red dotted line shows a fitted robust linear regression model (RLM), 
including the 95% confidence interval. RLM is used throughput this 
paper to fit a trend line to the data and quantify the associated uncer-
tainty (95% confidence interval of the mean). It uses a basic linear 
function: Y (response variable) = a (offset) + b (slope) X (explanatory 
variable). The offset and slope of the regression line in Fig. 1 are 1102 ±
178 (kWaux) and 0.08 ± 0.012 (kWaux/kWmcr), respectively, which in-
dicates that total auxiliary engine power is typically about 1100 kW plus 
8% of MCR for bulk carriers. However, the reported variability for in-
dividual vessels is clear in Fig. 1. 

3.2. Operational survey information 

Operational survey information is of interest as it is often used 
directly as input to emission inventory development. Since these oper-
ational survey data show significantly skewed distributions, a bootstrap 
analysis was conducted to estimate the mean and associated standard 
error and non-symmetric 95 percent confidence intervals (95% CI). The 
bootstrap re-samples the data with replacement and the estimate is 
calculated for this new resampled data set. This is repeated many times 
to form an approximate sampling distribution for the estimate, from 
which standard errors and confidence intervals can be calculated (James 
et al., 2017). 

Distributions of operational survey data are presented in the Sup-
plementary Material (SM3). The duration of the voyage varies sub-
stantially from 1 to 99 days. The (bootstrap) mean voyage duration is 
11.5 days (95% CI = 10.2–13.2 days). Time spent at berth reportedly 
varies from 1 to 284 h with a (bootstrap) mean duration of 33 h (95% CI 
= 28–39 h). Time spent at anchor reportedly varies from 0 to 1094 h 
with a (bootstrap) mean duration of 165 h (95% CI = 129–204 h). 

3.3. Main engine fuel use in transit conditions 

The survey requested information regarding total fuel use by the 
main engine during the voyage to port, as well as the average main 
engine load factor and the average speed of travel. The cube of the 
average speed of travel divided by service speed (propellor law) pro-
vides an independent estimate of the engine load factor. Service speed is 
defined as the speed that a ship is stated to be capable of maintaining at 
sea in normal weather and at normal service draught. Fig. 2 compares 
the two estimates of average engine load. Although there is a general 
linear trend and a moderate level of correlation (r = 0.62), there is 
substantial variability suggesting a certain level of inconsistency in the 
survey results. Therefore, both estimates of main engine load are used 
for comparison of reported (survey) and modelled fuel use. 

Multiplication of the average main engine load factor with rated 
main engine power (MCR) gives an estimate of mean operational engine 
power during the voyage. This is then compared with reported total fuel 
usage in the main engine on the voyage to arrival port (SM5) to identify 
the presence of any invalid data. The charts in SM4 show that twelve 
vessels reported very high and unrealistic fuel use (>200 tonne day) at 
engine power <20 MW. These outliers (6%) are considered to be 
incorrect survey data and have been removed. 

Fig. 3 compares reported average fuel use by the main engine with 
predicted fuel consumption in transit conditions. The black dotted line 
presents a perfect fit between survey data and model predictions. Four 
cases are considered for main engines and they reflect the use of either 
the default fuel mix used in the model or reported fuel mix in the survey, 
as well as the one of two estimates of average engine load discussed 
earlier (reported in the survey versus estimated with the propellor law). 
The case numbers and brief descriptions are shown in Table 2. The 
default fuel mix reflects a proportional and fleet averaged distribution of 
fuel use by fuel type (RO, MD, ULSD) and engine type (ME or AE and SS, 
MS and HS) for a particular ship type (sum = 1), whereas reported fuel 
mix reflect the fuel type actually used by a particular vessel. 

Of the 172 vessels in the survey, 13 vessels (8%) were identified as 
having invalid data entries and were removed, leaving a sample size of 
140 (81%) or 147 vessels (85%) with complete data (transit conditions), 
depending on the case (Table 2). 

Model performance statistics are presented for each case in Table 2 
and include the linear Pearson correlation coefficient (r), the coefficient 

Fig. 1. Relationship between MCR and total installed auxiliary power of sur-
veyed bulk carriers. The chart includes a fitted robust linear regression model 
(red dotted line) and includes the 95% confidence interval (red semi- 
transparent polygon). 

Fig. 2. Correlation between reported and independently estimated main engine 
load. The chart includes a fitted robust linear regression model (red dotted line) 
and includes the 95% confidence interval (red semi-transparent polygon). 
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of determination (R2), root mean squared error (RMSE), mean predic-
tion error (MPE) and sample size (n). 

The use of vessel-specific survey data on fuel mix and mean engine 
load (case 1) as input to the model predictions leads to reasonable model 
performance in transit conditions explaining 76% of the variation in the 
fuel survey data (R2 = 0.76) and a mean prediction error of 0.02 tonne/ 
day. The fitted parameters for the robust linear regression model (Fig. 3) 
are 0.21 ± 1.17 (intercept ± SE) and 0.88 ± 0.033 (slope ± SE). This 
suggest that the model offset (intercept) is not statistically significant 
but that the model tends to underpredict survey data at higher rates of 
fuel use. 

A similar but slightly improved prediction performance is seen when 
the default fuel mix is used rather than the reported fuel use (Case 3), 
which suggests that the model is not sensitive to variability in fuel mix. 
This lack of sensitivity to fuel mix is to some extent explained by the 
relatively stable specific fuel consumption values used in MTEM for the 
different combinations of fuel type and engine type. They vary from 181 
to 228 g/kWh. 

When the default modelling method to engine load prediction 
(propellor law) is used rather than reported engine load (Case 2), pre-
diction performance is reduced explaining 70% of the variation in the 
fuel survey data (R2 = 0.70) with a mean prediction error of 0.23 tonne/ 
day. In addition, the fitted robust linear regression model suggests a 
slight overprediction of fuel consumption in transit (slope = 1.11 ±
0.050), but a statistically insignificant intercept (− 0.24 ± 1.805). 

Finally, the use of default values in the model for fuel mix and the 
default method for mean engine load estimation (Case 4) initially led to 
the lowest model performance, explaining 59% of the variation in the 
fuel survey data (R2 = 0.59) with a mean prediction error of 0.24 tonne/ 
day. The deterioration in model performance was caused by a single 
vessel, which reported a fuel consumption of 31.6 tonne/day, whereas 
the model predicts 150.8 tonne/day. This particular vessel is a diesel- 
electric gas carrier of substantial size (GT = 144,978, MCR = 40 MW). 
Since this vessel did not report fuel mix in the survey, it was not reflected 
in Case 1 and 2 that use reported fuel mix. The reported mean engine 
load of 14.5% was too low to be considered in modelling of transit 
conditions and would qualify as manoeuvring instead. The reported 
average voyage speed of 15 knots and service speed of 19 knots suggests 
an average engine load of 46% rather than 14.5%. The erroneous entry 
in the survey for this vessel was removed. Refitting the model produced 
the same result as shown for reported fuel mix and estimated load (Case 
2), as is shown in Table 2. 

Fig. 4 shows the absolute prediction error distributions for the two 
contrasting Cases 1 and 4; survey input data versus default model set-
tings. Although the ship emission model is designed to predict fleet 
average emissions, it is instructive to examine the prediction errors that 
will be encountered for individual vessels. The predicted fuel rates 
represent fleet average values. It is clear that real-world variation will 
occur. For example, the power demand in the main engine propulsion 
system can change significantly depending on weather and sea condi-
tions (e.g. currents). 

Regarding relative errors for individual vessels, the data suggest that 
the range of prediction errors (95% confidence interval) lies between 
about − 50% and +75% when default model settings are used to predict 
fuel consumption in transit conditions. This error is reduced to about 
±50% when survey data (reported fuel type and engine load) is used as 
input. However, survey data are typically not available, so the use of 
default model settings are most common. 

The ship emission algorithms are designed to produce accurate es-
timates at fleet level, in other words, to make reliable predictions of total 
emissions for all ships operating in the study area. Table 3 presents the 
performance results at fleet level, as well as by ship category. 

Using the survey data as the benchmark, the prediction error of the 
ship emission algorithm at fleet level (all ship types) is +12%. This 
means that the predictions are conservative and that they overestimate 
reported fuel use during transit with 12 percent on average. The un-
certainty in the mean values (standard error) is similar, which suggests 
that observed vessel specific variability in reported fuel use is replicated 
in the predictions. 

For the individual ship categories, the accuracy is generally similar 
or better, except for oil tankers. The survey data suggest that emission 
algorithms for oil tankers potentially underestimate fuel use during 
transit, but it is noted that the sample size is small with only 5 vessels. 
Since the majority of survey vessels were bulk carriers, the results are 
expected to be most robust for this ship type. The data suggest that total 
fuel use for a fleet of bulk carriers in transit conditions is overestimated 
with 15%. 

3.4. Fuel use at berth 

Power requirements for ships are usually reduced once in port, but 
they still vary depending on the type of ship and its activity, for instance, 
loading operations (cargo pumps, cranes), hoteling and cargo refriger-
ation. Auxiliary engines are generally used for electric power produc-
tion, while the main engines are shut down and the auxiliary boiler 
generates steam. The main engine is not used when ships are at berth or 
at anchorage, except for diesel-electric ships, where main engines may 
be used to generate auxiliary power. 

Fig. 5 shows the self-reported fuel use by the auxiliary engines at 
berth as a function of vessel size (gross tonnage) by type of ship. One 
vessel reported an unrealistic 800 tonne/day in the survey and was 

Fig. 3. Predicted versus reported fuel consumption during the voyage to arrival 
port (Case 1). The chart includes a fitted robust linear regression model (red 
dotted line) and includes the 95% confidence interval (red semi- 
transparent polygon). 

Table 2 
Performance statistics for four cases.  

Performance 
Statistic 

Case 1 
Reported 
Fuel Mix and 
Reported 
Load 

Case 2 
Reported Fuel 
Mix and 
Estimated 
Load 

Case 3 
Default Fuel 
Mix and 
Reported 
Load 

Case 4 
Default Fuel 
Mix and 
Estimated 
Load 

r 0.87 0.84 0.88 0.84 
R2 0.76 0.70 0.77 0.70 
RMSE (tonne/ 

day) 
10.2 12.6 10.1 12.4 

MPE (tonne/ 
day) 

0.02 0.23 0.01 0.22 

n 140 140 147 147  
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removed. The average results for bulk carriers and to a lesser extent 
tankers are based on a significant sample size (n = 115 and n = 8, 
respectively) and should be relatively robust, as is clear from the con-
fidence intervals. For the other ship types, however, sample sizes are 
small and the level of uncertainty is increased. It is recommended more 
survey data are collected for these ship types. 

Two cases are considered for berth conditions because average en-
gine load is not used (Table 1). They reflect the use of either the default 
fuel mix used in the model or reported fuel mix in the survey. Fig. 6 
compares reported fuel consumption at berth with predictions. Of the 
172 vessels in the survey, 131 vessels (76%) had complete data (at berth 
conditions) for further analysis (Table 4). 

Although the general direction from low to high values is in agree-
ment for model predictions and survey results, the performance of the 
berth prediction algorithms is significantly lower than the transit algo-
rithms. The use of default or survey fuel mix information hardly affects 
model performance (SM6). The berth fuel prediction algorithms explain 
21% of the variation in the fuel survey data (R2 = 0.21), which equates 
to a weak to moderate correlation coefficient of 0.46. The mean pre-
diction error is 0.16 tonne/day. 

For comparison, Hulskotte and Denier van der Gon (2010) conducted 
a survey of fuel used on-board of 89 seagoing ships in the Port of Rot-
terdam in the Netherlands. They also observed a high level of variability 
in the relationship between GT and reported fuel consumption at berth 
with low (and sometimes even negative) correlation coefficients. This 
suggests that the variability in berth fuel consumption is an inherent 
characteristic of fuel use at berth, rather than an issue with the predic-
tion model. 

The fitted parameters for the robust linear regression model are 1.59 
± 0.443 (intercept ± SE) and 0.63 ± 0.111 (slope ± SE). This suggest 

that the offset (intercept) is statistically significant and that the model 
tends to overpredict survey data at lower fuel rates (<5 tonne/day) and 
underpredict survey data at higher rates of fuel use (>5 tonne/day). 

Fig. 7 shows the absolute prediction error distributions for the two 
cases. At individual vessel level, the 95% confidence interval for relative 
prediction errors lies between about − 45% and +115% for both cases. 

The ship emission algorithms are designed to produce accurate es-
timates at fleet level. Table 4 presents the performance results at fleet 
level and by ship type. 

Using the survey data as the benchmark, the prediction error of the 
ship emission algorithm at fleet level is +6%, which is better than the 
prediction error for transit (+12%). This means that the predictions are 
slightly conservative and that they overestimate reported fuel use at 
berth with 6 percent. The uncertainty in the mean values (standard 
error) is similar, which suggests that observed variability in fuel use is 
replicated in the predictions. For the individual ship categories, the er-
rors vary greatly. The data suggest that emission algorithms for oil 
tankers potentially overestimate fuel use at berth with more than a 
factor of two, but it is noted that the sample size is small with only 5 
vessels. Significant overestimation of about 80% is also observed for 
container ships and tankers, but the sample size is even smaller. Since 
the majority of survey vessels were bulk carriers, the results are expected 
to be most robust for this ship type. The data suggest that total fuel use 
for a fleet of bulk carriers in transit conditions is underestimated with 
6%. 

3.5. Sulphur content and SO2 emission factors 

Ship exhaust contains sulphur dioxide (SO2) formed during the 
combustion of sulphur from fuel oil and lubricating oil. A small fraction 
(typically 1–2% of fuel sulphur) of this SO2 is oxidized in the exhaust to 
form SO3, which rapidly hydrates to form sulphate and is emitted as 
particulate matter (Sarvi et al., 2008). The exhaust temperature and the 
presence of catalytically active species affect the degree of conversion. 

The survey included a question regarding the sulphur content (% m/ 
m) of fuels used in main engines, auxiliary engines and auxiliary boilers 
as per the last Bunker Delivery Note. For the surveyed vessels, high 
sulphur residual oils are commonly used for both main engines and 
auxiliary engines. A small portion of ships (n = 8) reports the use of 
lower sulphur marine distillates such as Marine Gas Oil (MGO) and 
Marine Diesel Oil (MDO) with a maximum sulphur content of 1 %S. 
About 90% of the surveyed vessels (n = 153) reported the sulphur 
content for heavy fuel oil (HFO). The value varied between 0.85 and 
5.71 %S, with a mean value of 2.75 %S and a median value of 2.78 %S. 
Some vessels also reported the use of lower sulphur fuels such as In-
termediate Fuel Oil (IFO, n = 6, 0.35–3.21 %S) and Light Fuel Oil (LFO, 
n = 6, 0.09–0.44 %S). 

A weighted average sulphur content was calculated using reported 

Fig. 4. Absolute prediction error distributions for main engine fuel consumption of individual survey vessels during the voyage to arrival port for Case 1 (left) and 
Case 4 (right). 

Table 3 
Summary of mean survey and mean model predictions of main engine fuel use 
(tonne/day) at fleet level and by ship category during transit conditions, 
including the standard error of the mean, and the percent difference between 
survey and model mean values.  

Vessel type Sample 
size 

Survey Mean 
(±SE) 

Model Mean 
(±SE) 

Difference in 
Means 

Bulk Carrier 126 31 (±1.0) 35 (±1.5) +15% 
Container 2 53 (±16.9) 52 (±0.4) − 1% 
Cruise 4 73 (±34.8) 80 (±38.7) +10% 
General 

Cargo 
5 17 (±3.3) 16 (±3.5) − 6% 

Oil Tanker 5 29 (±5.3) 19 (±5.2) − 33% 
Tanker 3 22 (±1.9) 22 (±1.2) 0% 
Vehicle 

Carrier 
2 36 (±0.9) 30 (±9.1) − 16% 

Fleet 147 31 (± 1.4) 35 (± 1.8) þ12%  
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fuel use as weights for the main engine in transit and auxiliary engines at 
berth conditions. For main engine operation in transit conditions and 
auxiliary engines at berth conditions the weighted average sulphur 
content is 2.68 %S and 2.47 %S, respectively. The non-weighted arith-
metic average is similar with calculated values of 2.72 and 2.60 %S, 
respectively. 

The fuel based SO2 emission factor for transit and berth conditions 
was then calculated from the weighted average fuel sulphur content, 
conservatively assuming that all fuel sulphur is converted to SO2 in the 
exhaust gases and that the impact of exhaust aftertreatment (such as 

Fig. 5. Correlation between reported auxiliary engine fuel use at berth and ship size for different types of ship. The charts include fitted robust linear regression 
models (red dotted line) plus the associated 95% confidence interval (red semi-transparent polygon). Fitted parameter values and the Coefficient of Determination 
are included in the charts. 

Fig. 6. Predicted versus reported fuel consumption at berth (reported fuel mix). 
The chart includes a fitted robust linear regression model (red dotted line) and 
includes the 95% confidence interval (red semi-transparent polygon). 

Table 4 
Summary of mean survey and mean model predictions of fuel use (tonne/day) at 
fleet level and by ship category during stationary conditions (at berth), including 
the standard error of the mean, and the percent difference between survey and 
model mean values.  

Vessel type Sample 
size 

Survey Mean 
(±SE) 

Model Mean 
(±SE) 

Difference in 
Means 

Bulk Carrier 115 4 (±0.1) 3 (±0.1) − 6% 
Container 3 6 (±1.7) 10 (±4.0) +79% 
General 

Cargo 
3 3 (±0.3) 2 (±0.4) − 17% 

Oil Tanker 5 4 (±0.8) 10 (±2.2) +147% 
Tanker 3 6 (±0.6) 10 (±0.2) +74% 
Vehicle 

Carrier 
2 7 (±2.8) 6 (±1.2) − 10% 

Fleet 131 4 (± 0.1) 4 (± 0.2) þ6%  

R. Smit                                                                                                                                                                                                                                            



Atmospheric Environment: X 17 (2023) 100203

8

scrubbers, e.g. Yang et al., 2021) is still negligible in the fleet. The mass 
percentage of sulphur is multiplied with the ratio of the molecular 
weight of SO2 (64 g/mol) to the elemental weight of sulphur in fuel (32 
g/mol). The resulting fleet average SO2 emission factors are 54 g SO2/kg 
fuel for transit conditions and 49 mg SO2/kg fuel for at berth conditions. 
These values are close (− 7% to +1% difference) to the default emission 
factor in MTEM, 53 g SO2/kg fuel, which is used for both main engines 
and auxiliary engines using residual oil. 

It is noted that implementation of the global IMO fuel sulphur cap of 
0.50% on January 1, 2020 took place after the survey. Compliance and 
enforcement will be a critical factor determining the effective reduction 
in fleet average sulphur levels in marine fuels in the coming years 
(Cullinane and Cullinane, 2013; DNV, 2015), with a certain level of 
non-compliance reported even in ECAs (Mellqvist et al., 2017). It would 
therefore be useful to repeat the survey and update the results. 

4. Conclusions 

Following an evaluation with on-board emissions testing (Smit et al., 
2022), the performance of the Maritime Transport Emission Model 
(MTEM) was evaluated in this study with the results from a survey 
conducted by the Australian Maritime Safety Authority (AMSA). The 
survey data were collected for 172 vessels in 21 ports across Australia. 
The data were examined in detail and unrealistic survey data were 
removed. 

MTEM performs reasonably well during transit at sea regarding the 
prediction of main engine fuel consumption at fleet level when 
compared with the survey data (R2 = 0.6–0.8, MPE = 0.01–0.24 tonne/ 
day). The model (default settings) predicts fuel consumption in transit 
conditions at fleet level within 12% of the survey results, with generally 
similar results for individual ship categories. The results suggest that the 
model predictions for transit conditions are generally robust and con-
servative at fleet level. For individual vessels, errors are larger, as would 
be expected. They vary between about − 50% and +75% when default 
model settings are used and about ±50% when survey data (reported 
fuel type and main engine load) is used as input. Further calibration of 
the fuel use algorithms for transit conditions is not warranted at this 
stage, but collection of new survey data will be beneficial, particularly 
for ship categories that had small sample sizes in the AMSA survey used 
in this research. 

The survey data suggest that the ship emission model for at berth 
conditions has significant uncertainty for individual ships and ship 
categories, but that the general direction of the survey data is replicated. 
Compared to transit conditions, predicted fuel use at berth shows higher 
variability and reduced performance (R2 = 0.2, MPE = 0.15 tonne/day). 
The prediction model tends to overpredict survey data at lower fuel rates 
(<5 tonne/day) and underpredict survey data at higher rates of fuel use 
(>5 tonne/day). A bias correction could be applied to future application 
of the ship emissions model for stationary ships. The fitted regression 
function can be used to apply a vessel size dependent bias correction to 

the predicted values, assuming that the survey data are accurate and that 
the fleet mix is similar for the modelled situation. However, the survey 
data suggest that the ship emission model for stationary conditions 
(default model settings) performs reasonably well at fleet level with a 
prediction error of 6% and appears generally robust. It appears that 
large prediction errors cancel each other out at fleet level. As a result, 
bias correction may adversely affect overall accuracy and further survey 
data collection is recommended. 

Reported sulphur content in marine fuels confirms that the default 
emission factor for sulphur dioxide is a reasonable estimate for emission 
modelling before 2020. It would be useful to repeat the survey and 
update the results to reflect the implementation of the new global IMO 
fuel sulphur cap in 2020. 
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