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A BRISBANE TUNNEL STUDY TO ASSESS MOTOR VEHICLE EMISSION
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examine the main factors affecting prediction errors
R. Smit, P. Kingston, R., Tooker , D. Neale,  S. Torr, R. Harper, E. O’Brien, 

D. Harvest, D. Wainwright

ABSTRACT

Statistical analysis has been applied to 
vehicle emissions data collected in a recent 
Brisbane tunnel study with the aim being to 
validate newly developed Australian vehicle 
emission models and examine which factors 
are the main contributors to prediction 
errors. 

The results suggest that the COPERT 
Australia vehicle emission model is generally 
accurate at the fleet level, when compared 
with similar international studies, but 
under-estimates emissions by 2 to 36%, 
depending on the pollutant. These findings 
apply only to the specific measurement 
conditions in the tunnel (high speed, free-
flow).

Regression analysis revealed that light 
and heavy diesel vehicles are consistently 
and strongly associated with prediction 
errors across all pollutants. Whereas fleet 
level prediction of PM emissions by COPERT 
is good, a substantial under-prediction of 
PM emissions from diesel trucks is suggested 
by the statistical analysis. For NOx, the 
analysis suggests that modern large petrol 
passenger vehicles (e.g. SUVs) play an 
important role in the under-estimation of 
emissions. 

This indicates that further targeted 
emissions testing for these vehicles 
using e.g. PEMS would benefit vehicle 
emission modelling practice and air quality 
assessments in Australia. Other tunnel 
datasets in other cities, preferably of longer 
duration than a week, could be analysed in 
a similar fashion to see if these results are 
confirmed.

Keywords: Vehicle emissions, tunnel, 
validation, traffic impact

Comprehensive measurement of 
transport emissions in urban networks is 
cost prohibitive due to the large number 
of vehicles that operate on our roads with 
substantially different emission profiles, large 
spatial and temporal variability in vehicle 
activity and many real-world factors that 
influence emission levels. 

Modelling tools are therefore commonly 
used to estimate fuel consumption and 
emissions. Models are also required to make 
projections into the future. Vehicle emission 
prediction software is well-established in 
Europe and the US. However, these models 
do not adequately represent Australian 
conditions in terms of fleet mix, vehicle 
technology, fuel quality and climate. Large 
errors of up to a factor of 20 have been 
reported when overseas models are directly 
applied to Australian conditions without 
calibration (Smit and McBroom 2009). 
Therefore two software packages were 
recently developed for Australian conditions 
using comprehensive empirical data from 
major Australian laboratory emission 
testing programs. COPERT Australia1 has 
been developed to estimate motor vehicle 
emissions at a regional and national level (UQ 
2014), while a power based model (P¨P) was 
developed for more localised assessments 
(Smit 2014). 

As models are simplifications of reality, 
their limitations and accuracy should be 
clearly established. This paper will present 
results from a recent tunnel emissions study 
that was conducted in Brisbane. Statistical 
analysis has been employed with the aim to 
address two research questions:

1. How accurate are the newly developed 
Australian vehicle emission models 
(model validation)?

2. What factors are the main contributors 
to the prediction errors?

TUNNEL STUDIES

There are several methods used to (partially) 
validate vehicle emission models, such as 
on-board emission measurements (PEMS), 
remote sensing, near-road air quality 
measurements and tunnel studies. 

Tunnel studies have been extensively 
used around the world to compare model 
predictions with observed values and they 
have specific strengths and weaknesses. A 
strength is that emissions are derived from 
a large sample of the on-road fleet, thereby 
adequately capturing inter-vehicle variability 
in emissions, including ‘high emitters’. 
Moreover, measurements are carried out 

under relatively controlled conditions. 
For instance, the air dilution conditions 
are better known in tunnels than in open 
road measurements, and the influence of 
meteorological parameters such as wind 
speed and wind direction is usually negligible. 
Also, the spatial resolution aligns better 
with distance-based emission factors (g/
km) commonly used in vehicle emission 
models, as compared with localised validation 
methods such as remote sensing and near-
road air quality measurements.

However, there are also some challenges 
with tunnel studies. They rely on indirect 
measurements rather than direct exhaust 
measurements, which can introduce errors. 
They also represent only a limited range of 
operating conditions (typically ‘smooth’, 
uncongested, high-speed driving). As a 
consequence, validation results cannot be 
directly translated, for example, to commonly 
occurring urban driving conditions at lower 
speeds. Tunnels may also have significant 
uphill and downhill gradients, affecting 
emissions. The same applies to the so-called 
‘piston effect’, which occurs with one-way 
traffic flow, and any forced ventilation in 
the direction of the traffic flow combine to 
produce an effective tail wind that reduces 
aerodynamic drag on the vehicles in the 
tunnel and affects vehicle emissions. 

Furthermore, assumptions relating to the 
unknown proportion of vehicles in cold-start 
mode and actual vehicle loads are required to 
make a comparison with model predictions. 
For particulate matter, an additional problem 
originates from the contribution of both 
exhaust and non-exhaust sources2 to total 
concentrations. Nevertheless, tunnel studies 
provide a useful approach to (partially) 
validate vehicle emission models for specific 
traffic situations (high speed free-flow drive 
conditions).

TUNNEL MEASUREMENTS

Brisbane’s Clem Jones Tunnel (CLEM7) has 
4.8 km of twin 2-lane tunnels, with a cross 
sectional area of about 60 m2, linking major 
Brisbane roads. Air monitoring equipment 
was installed in the north tunnel ventilation 
vent on 25 August 2014 (DSITI, 2015), as is 
shown in Figure 1. 

Air monitoring data (five minute average) 
was collected by the Department of Science, 
Information Technology and Innovation 
(DSITI) in the vent for over a week for a 
number of key air pollutants (CO, NO, 
NO2, NOx, PM2.5, PM10, speciated VOCs 
and PAHs), as well as variables quantifying 

INTRODUCTION

Motor vehicles are a major source of air 
pollution and greenhouse gas emissions in 
urban areas around the world. The close 
proximity of motor vehicles to the general 
population makes this a particularly relevant 
source from an exposure and health 
perspective. This is illustrated by Caiazzo et al. 
(2013) who estimated that total combustion 
emissions (particulates, ozone) in the U.S. 
account for about 210,000 premature deaths 
per year, with motor vehicles being the largest 
contributor, contributing to around 58,000 
premature deaths per year.
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conditions in the tunnel vent (temperature, 
relative humidity, atmospheric pressure). 

Nitrogen oxides (NO, NO2, NOx) 
were measured using a light emission 
(chemiluminescent) analyser (Teledyne 
API200). Carbon monoxide (CO) was 
measured with an infrared absorption 
instrument utilising the gas filter correlation 
technique (Teledyne API300). Particle 
concentrations were measured with a 
Thermo Scientific 1405-DF TEOM Continuous 
Dichotomous Ambient Air Monitor to 
simultaneously measure PM2.5 and PM10 
particles. VOCs and PAHs were sampled 
with canisters and analysed using gas 
chromatography-mass spectrometry (GC/MS).

The pollutant monitoring data was 
checked by pre- and post-test calibration, 
as daily calibration for zero and span values 
could not be carried out during the test 
period. Particulate matter monitoring data 
collected with the TEOM instrument were 
verified according to Australian Standard 
AS/NZS 3580.9.13:2013. Examination of 
five-minute data was performed to check the 
quality and validity of the raw concentration 
measurements, before hourly averaged values 
were computed. A switched-flow mode 
NOx analyser can generate aliasing and time 
alignment errors in raw NO2 measurements 
in environments with rapidly changing 
concentration levels (CSIRO 2011). The 
occurrence of these errors was verified and 
corrected (0.4% of the 5-minute data; DSITI 
2015).

Tunnel emissions were computed 
by multiplying hourly measurements of 
time-aligned and background-corrected 
concentrations by tunnel air flow data 
(m3/h). Ambient concentration data from 
nearby stations were used as an estimate of 
concentrations at the tunnel entrance point 
(DSITI 2015). Hourly vehicle travel in the 
tunnel is quantified with a variable called 
‘vehicle kilometres travelled’ (VKT). Hourly 

VKT were computed by multiplying total 
traffic volume (veh/h) derived from classified 
traffic counts and tolling statistics with total 
distance (km) (DSITI 2015).

IN-TUNNEL FLEET MIX

The CLEM7 tunnel uses camera imaging 
technology to collect relevant vehicle 
information, including date and time 
stamped license plate numbers (LPNs). The 
LPN data were cross-referenced with vehicle 
registration information from the Queensland 
Department of Transport and Main Roads 
(DTMR), and individual vehicles were 
allocated to one of the 226 vehicle classes 
used in COPERT Australia. About 13% of 
LPN could not be matched with Queensland 
vehicle registration data, reflecting 
unidentified license plates and the portion of 
interstate and unregistered vehicles. So there 
is some residual uncertainty in the hourly 
in-tunnel fleet mix. The computed fleet mix is 
effectively based on a sample of the in-tunnel 
situation.

A comparison between the average 
Queensland fleet3 (UQ 2014) and the in-
tunnel fleet based on analysis of license plate 
numbers shows that there are significant 
differences. First, the proportion of diesel 
vehicles (both light-duty vehicles or LDVs and 
heavy-duty vehicles or HDVs) is substantially 
higher in the tunnel (30% versus 18% in 
the Queensland fleet), and the proportion of 
petrol and LPG vehicles is subsequently lower. 
Second, the tunnel has a lower proportion of 
small and large passenger cars, but a higher 
proportion of SUVs, as compared with the 
Queensland average fleet. 

Finally, the vehicle fleet in the tunnel is 
substantially younger with better engine and 
emission control technology, as compared 
with the average 2010 Queensland fleet. This 
is partly explained with the difference in base 
year, but also expected to reflect a tendency 
for newer vehicles to use tolled tunnels. This 
is illustrated in Figure 2, which shows the 
diesel HDV ‘technology class’ distribution or 
ADR standard (Australian Design Rule).
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Figure 1.  Installing measurement equipment in the CLEM7 Northbound tunnel vent.

Figure 2.  HDV fleet distribution over vehicle technology classes in the tunnel (base year 2014) 
and the average Queensland fleet (base year 2010), reflecting increasingly stringent emission 
standards from left to right, UNCNRTL = uncontrolled, ADR = Australian Design Rule.
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MODEL PREDICTION ERRORS

Figure 3 shows hourly emission predictions 
and observations in goodness-of-fit plots 
for each pollutant. A dot point represents 
one hourly value. The grey dashed 45$ lines 
indicate a perfect fit without bias. Any dot 
points on this line show model predictions 
that are equivalent to observations. If a point 
lies below the 45$ line, the model under-
predicts, and if is lies above the 45$ line, the 
model over-predicts. A linear ordinary least-
squares (OLS) regression model was fitted to 
these data:

! = "# + $ Equation 1

In this model, P represents the vector of 
hourly predictions, O the vector of hourly 
observations, ` is the vector of regression 
coefficients (`0, `1) and ¡ is the vector of error 
terms. This model is useful as the slope (`1) 
can be used to estimate the systematic error 
or bias in COPERT predictions in relation to the 
measured tunnel emissions. The coefficient of 
determination (R2), estimated slope (b1) and 
bias are included in Figure 3. 

The regression model indicates that the 
prediction software generally under-estimates 
emissions by 2 to 36%, depending on the 
pollutant. These validation results appear 
to be relatively good. For instance, a review 
of 50 international vehicle emission model 
validation studies showed that reported 
model prediction errors are generally within 
a factor of 2 for NOx and within a factor of 3 
for CO and PM, although differences as high 
as a factor of 5 have been reported (Smit et 
al. 2010).

A plausible factor for this consistent 
underestimation may be (in part) an 
incomplete representation in the COPERT 
Australia emission factors of vehicles with 
high or even excessive emissions (‘high 
emitters’). Vehicle ageing has a significant 
and unavoidable effect (increase) on vehicle 
emissions, and this is aggravated by poor 
maintenance and tampering. Although 
COPERT Australia simulates the effects of 
ageing with generic mileage correction 
algorithms, they are based on limited 
overseas data. In fact, recent research 
indicates that these correction algorithms 
underestimate ageing effects on emissions 
substantially and thus require further 
improvement (Borken-Kleefeld and Chen 
2015). The lack of maintenance and repair 
programs in Australia is expected to make 
this modelling issue even more important.

FACTORS DRIVING PREDICTION 
ERRORS

Vehicle classes will have different impacts 
on prediction errors, varying with the 
pollutant that is considered. For instance, 
it is possible that errors in CO emission 
predictions are mainly caused by inaccuracies 
in petrol car emission factors, whereas CO 
emission factors for diesel vehicles are, in 
fact, quite accurate. This type of information 
is highly relevant for further improvement 
of prediction software because it facilitates 
more cost-effective and focussed vehicle 
emission measurement programs that 

target specific vehicle classes, which show 
substantial discrepancies between observed 
and predicted emission factors.

An attempt was therefore made to use 
two different statistical methods to determine 
the vehicle classes that are largely responsible 
for prediction errors using the hourly tunnel 
data and the known fleet mix for each hour. 

Hours with reduced average speeds 
less than 75 km/h (e.g. due to tunnel 
maintenance) were removed to ensure 
homogeneous and comparable traffic 
conditions. Hourly data with less than one 
vehicle going through the tunnel per minute 
were also removed. This is important because 
hourly data with a small number of vehicles 
can be significantly influenced by errors 
in urban background concentrations, in 
particular for pollutants with relatively high 
background levels such as particles (PM).

Method 1 – Composite LDV and HDV 
emission factors
The first method examines two basic vehicle 
classes, i.e. LDVs (cars, light-commercial 
vehicles, motorcycles) and HDVs (trucks, 
buses). A composite emission factor (g/VKT) 
is computed when total tunnel emissions 
(g/h) are divided by total travel (VKT/h) for 
each hour of measurement. These normalised 
hourly emissions can then be plotted against 
the percentage of heavy-duty vehicles (PHDV) 
and a linear regression model is fitted (Smit 
and Kingston 2015a; 2015b):

% = & + "!'() + $ Equation 2

In this model, e is a vector of hourly 
composite emission factors (g/VKT),   is a 
constant high-emitter offset value (g/VKT), ` 
is a vector of regression coefficients (intercept 
`0 and slope `1), PHDV is the vector of hourly 
HDV percentages, and ¡ is the vector of 
independent and normally distributed random 

error terms. This model is useful as it can be 
used to estimate the mean emission factors 
(including 95% confidence intervals) for LDVs 
and HDVs by setting PHDV to zero and 100%, 
respectively. To illustrate this, Figure 4 shows 
the results for NO2.

The regression model based on tunnel 
measurements predicts a composite LDV 
NO2 emission factor of 72 mg/km (±9%). 
COPERT Australia predicts an average LDV 
NO2 emission factor of 89 mg/km for the 
Queensland fleet, which reflects the vehicle 
distribution differences discussed earlier, and 
a substantially lower value of 63 mg/km for 
the actual fleet mix in the tunnel. This value 
is 13% lower than the value measured in 
the tunnel and this difference is statistically 
significant (p < 0.05). 

The tunnel measurements produce a 
composite HDV NO2 emission factor of 428 
mg/km (±18%). COPERT Australia predicts 
an average HDV NO2 emission factor of 
777 mg/km for the Queensland fleet, but a 
substantially lower value of 436 mg/km for 
the actual fleet mix in the CLEM7 tunnel, 
which is similar to the measured value (2% 
error). These results indicate that prediction 
errors for NO2 are small overall, and largest 
for LDVs.

Figure 5 shows the results for PM10.
The regression model based on tunnel 

measurements predicts a composite LDV 
PM10 emission factor of 21 mg/km (±14%). 
COPERT Australia predicts an average LDV 
PM10 emission factor of 37 mg/km for the 
Queensland fleet, and a substantially lower 
value of 20 mg/km for the actual fleet mixes 
in the tunnel. This value is 4% lower than 
the value measured in the tunnel, but this 
difference is not statistically significant (p > 
0.05). 

The tunnel measurements produce a 
composite HDV PM10 emission factor of 210 
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Figure 3.  Hourly COPERT Australia predictions versus measured tunnel emissions by pollutant 
including validation statistics table (grey dotted line = 45° line, red line = linear regression line, 
red shading = 95% confidence intervals)

Pollutant R2 b bias

CO 0.97 0.64 -36%

NOx 0.98 0.72 -28%

NO2 0.98 0.98 -2%

PM2.5 0.95 0.94 -6%

PM10 0.95 0.87 -13%
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%� three meteorological variables:
k ambient temperature (T, ºC) 
k relative humidity (H, %)
k atmospheric pressure (P, atm.)

Automated stepwise variable selection was 
used to select the set of model variables 
that best correspond with hourly prediction 
errors for each pollutant (Venables and Ripley 
2002). The Akaike Information Criteria (AIC) 
was used to automatically select the best 
model. AIC is a commonly used statistic 
that measures the relative goodness-of-fit 
of different models, which is then used 
to rank the models against each other. 
Residual analysis (Hair et al. 1998) was 
performed to verify that the assumptions of 
regression analysis were not violated (e.g. 
homoscedasticity and normality of error 
terms).

One issue with this approach is that a 
subset of the predictor variables, i.e. the 
proportions of a particular vehicle class, is 
correlated among themselves. If a particular 
vehicle class increases, others necessarily have 
to decrease as the sum of all proportions adds 
up to 100%. Serious multicollinearity among 
the predictor variables can result in instability 
and uncertainty in the estimated regression 
coefficients. 

A formal and widely used method of 
detecting the presence of multicollinearity 
is computation of variance inflation factors 
(VIFs). These factors quantify how much of 
the variation in a particular predictor variable 
can be explained by the other regressor 
variables. VIFs were calculated for selected 
model variables to check for multicollinearity 
issues4. The modelling results are shown 
below in Table 1. It shows overall model 
significance and performance (R2), as well 
as VIFs. The statistically significant model 
variables are also presented, including model 
regression coefficients and p-values. 

Although the models are all statistically 
significant (p < 0.05), they explain a small to 
modest proportion of the variability in the 
data (14–31%). Various factors potentially 
contribute to the scatter in the tunnel 
emission measurements and variation in 
prediction errors that are not accounted for in 
the model:

%� Uncertainty in measured background 
concentrations.

%� Uncertainty in estimated hourly VKT.
%� Uncertainty in the vehicle 

classification with about 13% 
unidentified license plates.

%� Uncertainty in assumptions about 
cold-start proportions and vehicle 
loads. 

%� Smoothing of emissions and dynamic 
time delay in the tunnel.

Nevertheless the method presented here is 
useful in identifying which vehicle classes 
associate strongly with prediction errors. It 
is clear that light and heavy diesel vehicles 
feature prominently in the table, which 
indicates that further emissions testing for 
these vehicles would benefit vehicle emission 
modelling practice in Australia. 

The impact of a particular model variable 
is quantified using the multiple regression 
algorithms presented in Table 1. This is done 
in three steps for each pollutant individually:

%� Step 1) Compute the mean prediction 
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Figure 5.  Composite PM10 emission factors for LDVs and HDVs including 95% confidence 
intervals and comparison with COPERT Australia.

LDV QLD
(COPERT Australia)

LDV CLEM7
(COPERT Australia)

LDV CLEM7
(Measured)

0.
00

0.
02

0.
04

0.
06

0.
08

N
O

2 
em

is
si

on
 fa

ct
or

 (g
/k

m
)

HDV QLD
(COPERT Australia)

HDV CLEM7
(COPERT Australia)

HDV CLEM7
(Measured)

0.
0

0.
2

0.
4

0.
6

N
O

2 
em

is
si

on
 fa

ct
or

 (g
/k

m
)

Figure 4.  Composite NO2 emission factors for LDVs and HDVs including 95% confidence intervals 
and comparison with COPERT Australia.

mg/km (±17%). COPERT Australia predicts an 
average HDV PM10 emission factor of 150 
mg/km for the Queensland fleet, and a lower 
value of 130 mg/km for the actual fleet mixes 
in the tunnel, which is 37% lower than the 
measured value. The difference is statistically 
significant (p < 0.05). These results indicate 
that overall prediction errors for PM10 
are small, but significant for HDVs (under-
estimation).

Smit and Kingston (2015b) presented 
similar results for CO, NOx and PM2.5, which 
are summarised here:

%� Prediction errors for CO are significant 
overall, and likely caused by under-
estimation of composite emission 
factors for LDVs. However, prediction 
errors are significantly reduced when 
the impacts of road gradient and cold 
starts are included in the composite 
emission factors.

%� Prediction errors for NO
x
 are 

significant overall, and caused by 
under-estimation of composite 
emission factors for both HDVs and 
LDVs, but for LDVs in particular. 

%� Prediction errors for PM2.5 are not 
significant overall, and the composite 
emission factors for neither LDVs 
nor HDVs differ significantly from 
measured values.

Method 2 – Multiple regression analysis 
of prediction errors
The second method uses a more detailed 
vehicle classification and includes other 
variables. To assess the nature, magnitude 
and significance of the effect of different 
vehicle classes and other variables on the 
observed emission prediction errors, a 
multiple regression model is defined:

* = "+ + $ Equation 3

In this model, E represents the vector of 
predictions errors, which is computed as P/O, 
` is the vector of regression coefficients, X is 
a matrix of predictor variable observations and 
¡ is the vector of independent and normally 
distributed random error terms. Vector 
columns in X include:

%� the percentage of a particular vehicle 
class in the fleet for each hour of 
measurement:
k (petrol) motorcycles (MCY)
k light-duty petrol vehicles (LDP)
k light-duty diesel vehicles (LDD)
k heavy-duty diesel vehicles (HDD)
k diesel buses (BUS)
k gaseous fuel vehicles (LPG)

%� the ratio of the background 
concentration to measured tunnel 
vent concentration (B, -)
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error and identify the hour in the 
design matrix that is closest to 
this value. This particular hour is 
defined as the ‘base case’ and it 
quantifies a particular combination 
of ‘typical’ tunnel conditions in 
terms of proportions of each vehicle 
class, meteorological conditions and 
background concentrations.5 The 
regression model is then used to 
compute the prediction error E

base
 for 

the selected hour
%� Step 2) An alternative case is defined 

where the maximum value for a 
particular model variable is used.6 
The regression model is then used 
to compute the prediction error 
E
alt

, including the 95% confidence 
interval.

%� Step 3) The impact is considered 
differently for vehicle class variables 
and the other variables:
k For vehicle class variables, the 

level of over-prediction or under-
prediction in COPERT Australia is 
of interest. Since E

alt
 = P

alt
/O

alt
, the 

effect of a particular vehicle class 
set at 100% on the fleet-averaged 
emission factor can be assessed as 
over-estimation (e

alt
 > 1) or under-

estimation (0 < e
alt

 < 1).
k For the meteorological and 

background concentration 
variables, the sensitivity of the 
prediction errors to variation 
in these variables is of interest. 
These variables are not explicitly 
modelled in COPERT Australia, 
and are therefore assessed 
differently. The sensitivity (%) 
for a particular variable range is 
calculated as 100 = (E

alt
 – E

base
) / 

E
base

.

Table 2 shows the results of this analysis.
The following conclusions are drawn from 

the statistical analysis:
%� CO: COPERT under-predicts tunnel 

emissions by about 36%. The multiple 
regression analysis is inconclusive and 
no particular vehicle class could be 
identified that specifically causes the 
under-estimation of the composite 
CO emission factor in COPERT. In fact, 
LDDs are identified to significantly 
over-estimate CO emissions, which 

suggest that other factors must 
explain the discrepancies between 
predicted and observed variables. 
As discussed before, the combined 
effects of road grade, cold starts and 
high emitters are likely candidates 
for this systematic under-estimation 
in CO emissions, and it is suggested 
that correction factors are developed 
and included in future tunnel 
emission estimates. The observations 
are sensitive to small variations in 

Pollutant
Model performance Significant factors

p-value R2 VIF variable b p-value

CO < 0.001 0.30 < 1.3 Intercept 10.586 0.010
LDD 0.022 < 0.001

P -9.720 0.014

T -0.030 0.021

NOx < 0.001 0.31 < 3.3 Intercept 8.093 0.007
LDD 0.025 < 0.001

H 0.005 < 0.001
P -8.533 0.005

LDP 0.005 0.041

NO2 < 0.001 0.22 < 1.0 Intercept 0.280 0.015
LDD 0.027 < 0.001
BUS 0.106 0.032

PM2.5 < 0.000 0.31 < 1.6 Intercept 33.294 0.001
LDD 0.062 < 0.001
HDD -0.041 < 0.001

T -0.192 < 0.001
P 28.719 0.003

PM10 < 0.001 0.14 < 1.1 Intercept 0.936 < 0.001
B 0.889 0.004

-0.018 0.016

Table 1: Multiple regression models for prediction errors: performance and parameters. 

Table 2: Impacts of different model variables on prediction errors. 

Pollutant Sensitivity and Effect

CO

The diesel light-duty emission factor is over-estimated with a factor of 1.8 or more (LDD range 19-100%). 

The prediction error increases with 1-18%  when pressure increases from 0.999 to 1.005 atm.

The prediction error increases with 0-24% when temperature increases from 24 to 26 °C.

NOx

The diesel light-duty emission factor is over-estimated with a factor of 1.7 or more (LDD range 21-100%). 

The prediction error is reduced with 4-16% when humidity increases from 49 to 64%.

The prediction error increases with 2-13% when pressure increases from 0.999 to 1.005 atm.

The petrol light-duty emission factor is under-estimated with a factor of 2.2 or more (LDP range 67-100%). 

NO2

The  petrol light-duty emission factor is over-estimated with a factor of 2.2 or more. (LDD range 13-100%).

The diesel bus emission factor is over-estimated with 21% up to a factor of 20 (BUS range 0-100%).

PM2.5

The  petrol light-duty emission factor is over-estimated with a factor of 4.2 or more (LDD range 22-100%).

The diesel heavy-duty emission factor is substantially under-estimated, but extent cannot be accurately quantified (HDD range 
2-100%). 

The prediction error increases with 2-38% when temperature increases from 25 to 26 °C.

No consistent effect. The prediction error is either decreased up to 7% or increased up to 28%  when pressure increases from 
1.002-1.005 atm.

PM10

The prediction error is increased with 20-62% when B increases from 0.06 to 0.50.

The diesel heavy-duty emission factor is under-estimated with a factor 2 or more (HDD range 5-100%). 
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ambient temperature and pressure 
in the tunnel, explaining part of the 
scatter in the measurements.

%� NOx: COPERT under-predicts tunnel 
emissions with about 28%. It is 
noted that these NOx emissions are 
corrected for the combined effect 
of road gradient and piston air flow 
using the P¨P software7 (Smit and 
Kingston 2015a). The regression 
analysis suggests that light-duty 
petrol vehicles play a significant 
role in the under-prediction of NOx 
emissions. Before a detailed analysis 
of the in-tunnel fleet mix, previous 
work (Smit and Kingston 2015a) used 
the average Queensland fleet mix, 
and found that COPERT emission 
factors for LDVs and HDVs over-
estimated tunnel NOx emissions by 
23% and 13%, respectively. The 
under-estimation of 28% reported 
in this paper is based on COPERT 
predictions using the actual in-tunnel 
fleet mix. Since the tunnel has a 
larger proportion of newer vehicles 
and SUVs, as was discussed before, 
the results indicate that NOx emissions 
from new petrol cars and SUVs in 
particular, are under-estimated and 
would require further investigation. 
Tunnel observations are sensitive 
to small variations in humidity and 
pressure in the tunnel, explaining part 
of the scatter in the measurements.

%� NO2: COPERT predictions are similar 
to measured tunnel emissions (error 
of only -2%). The regression analysis 
suggests that NO2 emissions from 
LDDs and buses are significantly 
over-estimated, which indicates that 
under-prediction of NO2 emissions 
for other vehicle classes or other 
factors (cold start, road gradient, high 
emitters) compensates for this.

%� PM2.5: COPERT predictions are quite 
similar to measured tunnel emissions 
(error of only -6%). The regression 
analysis suggests that emissions 
from HDDs are substantially under-
estimated, whereas emissions for 
LDDs are significantly over-estimated. 
This is an interesting result as it 
suggests that errors in emission 
factors offset each other. Tunnel 
observations are sensitive to small 
variations in temperature in the 
tunnel, explaining part of the scatter 
in the measurements.

%� PM10: COPERT under-predicts 
tunnel emissions with about 13%. 
The regression analysis suggests that 
emissions from HDDs are substantially 
under-estimated, which is consistent 
with the results found in method 
1 for this pollutant and for PM2.5. 
Tunnel observations are sensitive 
to the ratio of the background 
concentration to the concentrations 
in the tunnel vent, indicating that 
errors in background concentrations 
significantly affect measured emission 
factors.

DISCUSSION AND CONCLUSIONS

Statistical analysis has been applied to vehicle 
emissions data collected in a recent Brisbane 
tunnel study with the aim to address two 
research questions 1) How accurate are the 
newly developed Australian vehicle emission 
models (model validation)?, and 2) Which 
factors are the main contributors to the 
prediction errors?

The results suggest that the COPERT 
Australia is generally accurate at fleet level, 
when compared with similar international 
studies. COPERT underestimates emissions by 
2% to 36%, depending on the pollutant. 

These findings apply only to the specific 
measurement conditions in the tunnel, i.e. 
a free-flow speed of about 70–80 km/h, the 
particular tunnel road gradient profile and 
ventilation conditions (piston effect) and the 
specific young fleet mix. As a consequence, 
these results cannot be used to make generic 
statements about accuracy of the software. 
Instead, other studies are required to quantify 
prediction accuracy in other urban conditions, 
using for instance remote sensing or near-
road air quality measurements.

Regression analysis was conducted to 
determine which vehicle classes and other 
factors have the largest impacts on the 
prediction errors. This type of information 
is highly relevant because it facilitates more 
cost-effective and focussed vehicle emission 
measurement programs targeting specific 
vehicle classes that ‘drive’ prediction errors.

It is clear that light and heavy diesel 
vehicles are identified consistently to 
associate strongly with prediction errors 
across all pollutants. Whereas fleet level 
prediction of PM emissions by COPERT is 
good, a substantial under-prediction of PM 
emissions from diesel trucks is suggested by 
the statistical analysis. For NOx, the analysis 
suggests that modern large petrol passenger 
vehicles (e.g. SUVs) play an important role in 
the underestimation of emissions. 

This indicates that further targeted 
emissions testing for these vehicles using 
e.g. PEMS would benefit vehicle emission 
modelling practice and air quality assessments 
in Australia. Other tunnel datasets in other 
cities, preferably of longer duration than a 
week, could be analysed in a similar fashion 
to see if these results are confirmed.

The statistical analysis also showed that 
small natural variations in meteorological 
parameters such as temperature, pressure 
and humidity have a statistically significant 
effect on observed emissions and therefore 
prediction errors. 

Various factors contribute to the 
significant scatter in the tunnel emission 
measurements and variation in prediction 
errors that are not accounted for in the 
model. These include uncertainty in measured 
background concentrations, assumptions 
regarding cold starts, vehicle loads, etc., 
estimated hourly VKT, vehicle classification 
(13% unidentified license plates) and 
smoothing of emissions and dynamic time 
delay in the tunnel.

There are a number of factors that 
complicate the comparison of COPERT 
PM2.5 and PM10 emission factors with 

results derived from the tunnel study. Firstly, 
background concentration levels are relatively 
high for PM and errors in background 
concentration data can significantly impact 
on results. There are also significant 
differences between the empirical base for 
the COPERT software and the tunnel results. 
Whereas laboratory emission measurements 
are conducted under strictly defined and 
controlled conditions, the tunnel PM samples 
measure particles that have aged (typically 
8 minutes after emission from exhaust pipe) 
and have undergone several processes 
such as nucleation, coalescence and 
condensation that may significantly affect 
PM mass concentrations. Finally, tunnels 
are uncontrolled with respect to impacts of 
non-exhaust particulate matter emissions, 
and could be significantly influenced by 
e.g. trucks carrying dusty loads. Estimates 
of non-exhaust emissions are included in 
COPERT, but are uncertain. Given these 
considerations, the validation results for PM 
show a remarkably good performance of 
COPERT Australia.
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FOOTNOTES

1 COmputer Programme to calculate 
Emissions from Road Transport Australia

2 Due to tyre and brake wear and particle 
re-suspension, possibly even direct dust 
emissions from e.g. gravel trucks.

3 Based on an analysis of vehicle registration 
data for base year 2010.

4 Large values of VIF indicate possible 
multicollinearity associated with a particular 

model variable. In general, values larger than 
5 indicate a possible multicollinearity problem, 
while values larger than ten indicates that 
multicollinearity is almost certainly a problem.

5 For instance, for CO the average prediction 
error is –36% and hour 78 has the same 
prediction error and the following conditions 
MCY = 0.8%, LDP = 78.1%, LDD = 18.7%, 
HDD = 1.1%, BUS = 0%, B = 0.05, T = 24$C, 
H = 44% and P = 0.999 atm.

6 For instance, when the LDD variable is 
considered, LDD is set to 100%, all other 
vehicle classes are set to zero, and B, T, H and 
P remain the same.

7 The P6P software simulates NOx and 
CO2 emissions at a high resolution (1 Hz) 
and accounts for the effects of speed, 
acceleration, road gradient, vehicle loading, 
air-conditioning and wind speed on 
emissions.
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