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ABSTRACT  

VERSIT+ LD is a new generation emission factor model which offers the possibility to calculate 

emission factors for passenger cars as a function of driving cycle characteristics. The model uses 

empirical relations between emissions and cycle variables derived from the analysis of a large 

database of laboratory emission test results obtained using real-world driving cycles. 

VERSIT+ LD can be applied at various levels of aggregation by using real-world driving 

cycles which are representative for these situations. Moreover VERSIT+ LD enables the user to 

estimate the effects of e.g. traffic flow conditions, driving dynamics and driving behaviour on 

vehicle emissions. 

This paper presents the structure of the model, the statistical methodology using weighted 

least-squares multiple regression, as well as a discussion of the first results.   
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1 INTRODUCTION 

Despite great successes in reducing exhaust emissions from passenger cars over the past decades, 

the emissions from road transport activities still make a significant contribution to air quality 

problems at a range of scales. Issues of concern include localised exposure to air pollutants in heavy 

traffic areas (both urban and near highways), photochemical smog formation on a regional scale, 

total emissions of e.g. NOx and particulates at a national level, and global warming. To a large 

extent the size of these problems as well as the effectiveness of possible solutions are assessed on 

the basis of modelling rather than measurements. 

The European Directive on National Emission Ceilings sets challenging goals for emissions of SO2, 

NOx, NMHC, NH3 at the national level. Monitoring progress in achieving these goals requires 

accurate average emission factors at the level of the national vehicle fleet, properly reflecting the 

fact that the relative reduction of real-world emissions in Euro 3 and Euro 4 cars is smaller than the 

reduction in emission limits and emission values measured in the type approval testing. 

Similarly, the strict concentration limits set for NO2 and PM by the EU air quality directives require 

accurate predictions of local air quality as a function of the local traffic situation and the effects of 

improvement measures such as smoothing of traffic flow. Local air quality modelling is based on 

dispersion models, which require emission factors as input. 

On the one hand the difficulties in meeting the above targets presently experienced by many 

countries lead to a growing need for accurate and more versatile emission estimation tools for road 

traffic. These tools are becoming ever more crucial for the evaluation of road projects or transport 

networks and for the design and evaluation of the most cost-effective emission control policies. On 

the other hand, simulation or other types of modelling of vehicle emissions has become increasingly 

more difficult due to higher variability in emissions (e.g. De Haan & Keller, 2000). This increasing 

variability is the result of more complex engine and emission control technology which is used to 

meet stricter emission standards. 
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Various traffic emission models exist around the world and they can be roughly classified in terms 

of their treatment of “kinematic” effects, i.e. the effect of different driving patterns on emissions. 

Table 1 presents an overview of four types of models. The least complex model (type I) estimates 

emissions for a few discrete predefined traffic situations (e.g. “urban driving”), whereas the most 

complex model (type IV) uses several continuous variables (e.g. “root-mean-square-acceleration”, 

“mean idle time”) in the prediction process. 

Although more complex models may be more accurate and/or more versatile than less complex 

models, they also require more detailed input data. Therefore, availability of model input data may 

restrict application of complex models in certain situations. It is noted that there is no “best” type of 

model. The most appropriate model to use is determined by the application and the required level of 

detail and accuracy (Smit et al., 2002).  

Table 1 – Model Classification 

I II III IV Model Type 

Discrete Continuous 

Description Few Traffic 

Situations 

Several Traffic 

Situations 

Univariate 

Regression Model 

Multiple 

Regression Model 

Kinematic 

Model 

Variable(s) 

Urban, Rural, 

Motorway 

Stop-and-Go, 

Uneven Bends, 

Frequent 

Bottlenecks, etc. 

Average Speed Various Cycle 

Parameters 

Example MODEM HBEFA COPERT 

MOBILE 

IM-CNR 

VERSIT+ LD 

 

Despite the numerous emission models that exist today, there is a continuous need for further model 

improvement and understanding of vehicle emissions. This paper reports on the recent development 

of a new traffic emission model at TNO called VERSIT+ LD. This new modelling approach is 

designed to predict accurate emission factors for passenger cars, including the latest Euro classes, as 

a function of driving characteristics. In terms of model type VERSIT+ LD is classified as a type IV 

model. 

The original VERSIT model was first developed at TNO in 1987. This model was based solely on 

Eurotest emissions data and emissions were basically modelled as a function of propulsion energy. 

With the advent of new vehicle technology, it was found that the original modelling approach led to 

unsatisfactory results, particularly with respect to regulated air pollutants. 

2 OVERALL MODEL STRUCTURE 

The main objective of VERSIT+ LD is to predict accurate mean emission factors, expressed in 

grams per kilometre, for a particular vehicle category as a function of specific traffic conditions that 

are characterized in terms of a limited number of driving cycle variables. The focus is on passenger 

cars, with a possible extension to vans. Vehicle categories in VERSIT+ LD, which are referred to as 

“model classes”, are defined in terms of a combination of emission standard (Euro 1, 2, 3, 4), fuel 

type (petrol, diesel, LPG), pollutant (CO, HC, NOx, PM, CO2) and if appropriate vehicle subclass 

(direct/indirect fuel injection, with or without diesel particulate filter) or vehicle weight category. A 

driving cycle is a unique series of idling, acceleration, cruising and deceleration sequences and can 

be presented in the form of a speed-time profile. Figure 1 presents the VERSIT+ LD model 

structure.  
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Figure 1 – VERSIT+ LD Model Structure 

The core of the model is a set of regression equations presenting an empirical model of the 

emissions of vehicles in real-world driving with a hot engine. Emissions related to cold start are 

modelled separately and added to the ‘hot’ emissions to generate emissions factors including cold 

start. 

The model accepts as input any driving pattern and requires a selection of model class by the user. 

In the model, the driving pattern data are then used to compute values of all relevant driving cycle 

variables. These variables are discussed in more detail further on. The computed cycle values are 

subsequently used by the model algorithms to calculate as model output a mean emission factor. 

3 METHODOLOGY 

3.1 The underlying database 

Driving cycles and associated emissions test data are the fundamental building blocks of the model. 

VERSIT+ LD is based on a large database that contains almost 12000 emission tests performed on 

about 700 Euro 1 to 4 vehicles using a total number of 126 different driving cycles. The driving 

cycles are mostly so-called real-world cycles including widely used test cycles such as the urban, 

rural and motorway parts of the Modem cycle and the Artemis Common Driving Cycle (CADC) as 

well as a large number of driving cycles developed by TNO representing e.g. different levels of 

congestion in highway driving and different driving styles. Straightforward averaging of the 

emissions measured on different cars on the same real-world driving cycle would constitute a class I 

or II model according to Table 1, depending on the aggregation level of the driving cycle. 

This database is continuously growing as a result of the ongoing Dutch In-Use Compliance 

programme (e.g. Gense et al., 2000) and new dedicated measurement programmes carried out at 

TNO. Hence, VERSIT+ LD is regularly upgraded with the latest emissions information. 

3.2 Data analysis and data transformation 

One of the assumptions of least-squares regression analysis is that the error terms have constant 

variance (homoscedasticity). As a consequence, the variance of the individual vehicle emissions 

data (σ2
) must have the same constant value and thus must be stable when plotted against the mean 

emission factors Yi for all driving cycles i. A model for the relationship between Yi and σ2
 is 

formulated as (Logothetis, 1990): 
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 ( ) k

iYφσ =2 , and hence: )log()log()log( 2

iYk+= φσ  (1) 

This model is used to examine whether a stabilisation of σ2
 is required. The variance is stable when 

k is approximately zero. Analysis of the VERSIT+ LD emissions data showed that for each model 

class a statistically significant relationship (significance level is less than 5%.) exists between Yi and 

σ2
. This relationship is positive, i.e. variance increases with the mean emission value. To illustrate 

this, Figure 2 displays a scatter plot for one model category.  

 

Figure 2 - Relationship between Yi and σσσσ2
 

The k values (including 95% confidence limits) were determined for each model class by simple 

linear regression of log(Yi) on log(σ2
). In Figure 2, the solid line shows the linear regression line 

where the angle of this line represents the k-value. It was found that the majority of model classes 

have a k-value of approximately 2. This indicates that a log-transformation (Wu & Hamada, 2000, 

p. 67) of the raw emissions data would stabilize the variance of these emissions. The log-

transformed emission rates Yi
T
 are subsequently used in the linear regression and variable selection 

procedure described below. 

3.3 Regression Analysis 

VERSIT+ LD consists of a set of statistical models that have been constructed using least-squares 

multiple regression analysis. The aim of this statistical approach is to find an empirical relationship 

between emission rates and a limited number of variables, which are selected from a pool of driving 

cycle variables. For most driving cycles the database contains a substantial number of test results 

for the same vehicle class. Given that the scatter in individual vehicle emissions is generally quite 

large and the fact that we are interested in modelling the average emission behaviour of a class of 

vehicles, a statistical fit can be more efficiently obtained by first averaging for each driving cycle all 

emission results obtained on that cycle. Subsequently a weighted least-squares multiple regression 

approach (denoted as WMR) is used which accounts for the fact that different numbers of cars have 

been tested on the different cycles.  

In the WMR procedure a first-order regression model is fit to the experimental data according to the 

following equations (Neter et al., 1996): 

 ( ) βXYE
T

=  (2) 

 ( ) T1
YWXXWXβ ′′=

−
 (3) 
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As explained in the previous section the response variable Yi
T
 is the mean of the log transformed hot 

running emissions measured in g/km for a particular driving cycle i. In Equation 2 E(YT) represents 

the vector of expected Yi
T
 values or mean responses for all i = 1 to n with n the total number of 

cycles for which measurement data are available. X represents an n × p matrix which contains the 

predictor variable observations (values of driving cycle variables per cycle) for a selected set of p 

regression variables. ββββ represents a p × 1 column vector of regression coefficients, and is 

determined according to Equation 3, in which W is a n × n diagonal matrix containing the weights. 

These weights are equivalent to the number of emission tests that were conducted on each specific 

driving cycle. Weights represent the amount of information that is contained in a particular 

observation. Observations with small variances due to a large number of underlying measurements 

(and hence a large weight) provide more reliable information about the regression relationship than 

those with large variances. In this way WMR approach effectively produces a multidimensional 

hyperplane of best fit through the log-transformed emission test data averaged per cycle. 

3.4 Variable Selection Procedure 

A pool of in total 49 predictor variables is considered for inclusion in the regression analysis. All 

these variables quantify certain aspects of driving cycles and they can be calculated once a 

particular speed-time profile is known. The choice of variables has been based on theoretical 

considerations (e.g. van de Weijer, 1997), a review of relevant international literature and additional 

work conducted at TNO.  

A classification framework of all 49 cycle variables is provided in Table 2 (next page). Driving 

cycle variables are categorized according basic type of statistic (location, dispersion) and “aspect”. 

Two abbreviations are used in Table 1, namely σ (standard deviation) and cov (coefficient of 

variation). 

It would take up too much space to describe the computation of each variable in detail, but it is 

expected that the majority of variables are self-explanatory. This may not be the case for many of 

the “transient” variables, some of which have been developed at TNO. Transient variables 

incorporate the rate of change in acceleration per unit distance or unit time. As an example, the 

computation of RPSI (m/s
3
) is given by: 

 
x

dt
dt

da
v

RPSI

T

t∫ 








=

+

0  (4) 

where vt is the instantaneous speed (m/s), a
+
 is the positive instantaneous acceleration (m/s

2
), T is 

the cycle time (s) and x the cycle distance (m). 

Given the large number of possible combinations of predictor variables, a procedure is needed to 

define an optimal and reduced subset of predictor variables for the final regression model. This final 

model should have a large maximized predictive power, should be unbiased and should preferably 

include a limited number of variables. 
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Table 2 – Categorisation of Cycle Parameters Used in the Development of VERSIT+ LD 

Aspect Location Statistic Dispersion Statistic 

Stop Number of Stops per Kilometre, 

Mean Stopped Time 

- 

Driving Mode Proportion Percentage of Time Stopped, in 

Acceleration or in Deceleration  

- 

Speed Speed (Mean, Maximum, 

Running, Log), Unit Travel Time  

σ (Speed, Running Speed),  

cov (Speed, Running Speed), 

TAD 

Acceleration Acceleration (Mean, Maximum) 

Deceleration (Mean, Maximum) 

σ (Acceleration, Deceleration)  

cov (Acceleration, Deceleration) 

Root-Mean-Square Acceleration 

Power  Power, Acceleration Power, 

Deceleration Power, RPA, PKE 

σ (Power, Acceleration Power, 

Deceleration Power)  

Rolling/Drive Train Resistance  RPS, RSS, RPSS - 

Aerodynamic Drag  RCS, RPCS  - 

Transient Factors ∆a1, ∆d1, ∆a2, ∆d2, Dad, Ddd, RAI, 

RDI, RPSI, RNSI, RPSAI, RNSAI 

- 

 

In order to achieve this, it was first investigated whether certain variables can be expressed as linear 

combinations of remaining variables in the pool. These variables contain no additional information 

and are therefore superfluous. Statistical analysis resulted in a reduction of the original pool of 49 

variables to a pool of 34 variables. 

To find the combination of variables that provides the best fit an automatic variable selection 

procedure (“all-possible subsets”) is employed using Mallow’s Cp criterion. This criterion is used to 

find an unbiased regression model with small total mean squared error (bias plus random), and is 

computed as (Daniel & Wood, 1971): 

 ( )pn
SSE

C
pooled

p 2
2

−−=
σ

 (5) 

where SSE represents the “error sum of squares”, σ2
pooled represents the pooled variance of the 

individual log-transformed emission rates over each driving cycle, n the number of driving cycles 

on which the model is based, and p the number of variables (incl. the intercept). To illustrate the 

procedure, Figure 3 (next page) graphically shows the results of this procedure for one model class 

(Euro 2 diesel, NOx).  

Every dot represents a possible combination (subset) of model variables. This chart can be used to 

identify a combination with: 

� a minimized Cp value (i.e. minimized total mean squared error);  

� no bias (when the Cp value is equal to or less than p, i.e. below the solid Cp = p line); and 

� a minimized number of variables (low p value). 

The selected combination for this case is presented by the triangle in figure 3. This combination 

suggests (not shown) the use of eight model variables in the regression equation for NOx emission 
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rates from Euro 2 diesel cars, namely average speed, logarithm of average speed, maximum speed, 

number of stops per kilometre, mean deceleration, mean deceleration power, RDI and RPSI. 

 

Figure 3 – Automatic Variable Selection Procedure (Example) 

3.5 Residual Analysis 

Once the model variables have been selected, the WMR procedure is used to estimate regression 

coefficient values. A next step is to verify that the assumptions of WMR are not violated. This is 

done by means of residual analysis (Neter et al., 1996). This way the regression model is checked 

for normality of error terms, constant error variance and presence and effect of outlying 

observations. Once the conditions of valid application of WMR are satisfied, the last step of the 

modelling process involves back-transformation. 

3.6 Back-transformation 

The required output from VERSIT+ LD are arithmetic mean emission factors for a pre-specified 

driving cycle. The arithmetic mean is considered to be the best measure of central tendency since it 

reflects the disproportionate effect of high-emitting vehicles on total emissions. The regression 

functions discussed in previous sections, however, predict the mean log-transformed emission 

factor. Simply taking the antilog of the E(Yi
T
) would result in the geometric mean, which would 

underestimate E(Yi). Hence a correction term is required. The expected untransformed arithmetic 

mean emission factors can be computed by (Johnson et al., 1994): 

 ( )25.0)()( pooled

T

ii YEEXPYE σ+=  (6) 

4 MODEL VERIFICATION & VALIDATION 

Model verification is the process of making sure that the model is doing what it is intended to do. 

This is done by comparing model predictions to the observations on which the model is based. As 

an example, Figure 4 graphically depicts the results for one model class (NOx of Euro 2 diesel 

vehicles). 
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Figure 4 – Model Verification (Euro 2 Diesel Car) 

Every bar in Figure 4 represents the predicted emission factor for one particular driving cycle 

(ordered by size of the average measured emissions). For this model class, the regression equation 

is based on 61 driving cycles in total. The mean observed values are presented as black squares. The 

error bars denote the 95 percent confidence interval (2∆Yi,95%) calculated on the basis of the pooled 

variance of all underlying vehicle data: 

 nYY pooledii /96.1 2

%95, σ⋅⋅=∆   (7) 

Figure 4 shows that for this model the predicted values are sometimes below, sometimes above the 

measured test data but they always fall within the 95% confidence interval. 

It can be argued that the predicted means are better estimates of the “true” mean (which is 

unknown) than the measured data points (average emissions over a single cycle) since the predicted 

values use information from all data points on which the model is based, whereas observed values 

do not include this additional information. 
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Figure 5 – Model Verification (Euro 2 Petrol Car) 

Figure 5 shows the visual model verification for NOx of Euro 2 petrol cars. This model class is 

based on a total of 98 driving cycles. In this case, not all predictions lie within the 95%  
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confidence intervals of the test data. About 5% of the predictions lie outside these intervals, 

showing a less good fit than for the Euro 2 diesel car model displayed in Figure 4. Nevertheless, the 

predicted values generally follow the observations quite well. The large confidence intervals on the 

right side of Figure 5 typically relate to cycles over which only one or a few vehicles have been 

measured. 

Model validation ideally involves comparison of model results to independent observations from 

the system being modelled. Initial validation of the first version of VERSIT+ LD is conducted by 

random selection and removal from the database of 25% of the emission data points (cycles on 

which vehicles have been tested). The regression model is subsequently refitted to this reduced 

dataset (“reduced model”). This process is carried out repeatedly and the “sample” of model 

predictions for each cycle is then compared to the observations. This way the robustness of the 

model is tested. Figure 6 shows the results of this exercise for NOx emission predictions for Euro 2 

petrol cars. 
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Figure 6 – Model Validation (Euro 2 Petrol Car) 

In Figure 6 the grey dots represent the model predictions that are based on all 98 driving cycles (i.e. 

“full model”). These points are sorted from smallest to largest values. The solid lines in the chart 

represent the maximum and minimum predicted values that were computed with ten different 

reduced models. These lines thus show the largest deviations from the full model predictions that 

were found for a particular cycle in this model validation exercise. Figure 6 shows that deviations 

are low (generally less than 15%) and that the largest positive deviations (up to 36%) are found 

when high emission factors are predicted. Overall, the model appears to be quite stable.  

Further validation of VERSIT+ LD should in principle be achieved by comparing model predictions 

to measurement results for driving cycles on which so many vehicles have been tested that the 

arithmetic mean of the measured emissions is an accurate estimate of the average emissions within 

a few percent. The pooled variances σ2
pooled found in our analysis generally between 0.1 and 3.0, 

with a typical value of 1.5.  

Equation 7 then shows that to obtain a mean emission value that is accurate within 10% (i.e 95 

percent confidence interval divided by the mean ≤ 0.10) requires testing of at least 600 vehicles 

over a given cycle. This not only shows that a scientifically sound validation of VERSIT+ LD is not 

readily achievable, but also that models of type I and II, if they are solely based on mean emission 

rates over representative driving cycles, are expected to have a limited accuracy given the size of 

test programmes used to provide the underlying data. 
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5 ONGOING WORK 

In terms of ongoing work, sub-models for additional emissions related to cold start and airco use are 

currently being developed. Furthermore computation of the accuracy of emission factor predictions 

(i.e. confidence intervals) is being incorporated in the model. Another important aspect that requires 

further work is the development of a methodology that will determine to what extent extrapolation 

is acceptable with respect to the model output. Finally, the constant generation of new test data at 

TNO will allow for regular model updates and model validation. 

6 CONCLUSION 

With the first version of VERSIT+ LD nearing completion a new generation emission factor model 

is presented which offers the possibility to calculate emission factors for passenger cars as a 

function of driving cycle variables. The model uses empirical relationships derived from the 

analysis of a large database of measurement data. Using representative real-world driving cycles at 

a high aggregation level VERSIT+ LD can be used to fill type I and II models as identified in Table 

1. At a lower aggregation level VERSIT+ LD can for instance be used to estimate the effects of 

measures influencing traffic flow or driving dynamics on emissions. At this point in time, cycle 

variables obtained from recorded driving patterns must be used for this kind of application. To 

enhance applicability in local traffic and air quality modelling the development of intermediate 

models linking more readily obtainable input data (e.g. average speed, intensity and traffic flow 

conditions) to typical values of the cycle variables used in VERSIT+ LD will be necessary. 
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