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Road transport is a major source of air pollution 
and greenhouse gas emissions around the world. 
Comprehensive measurement of transport emissions in 
urban networks is not feasible due to the large number 
of vehicles that operate on our roads, large spatial and 
temporal variability and the many factors that influence 
emission levels. Modelling tools are therefore commonly 
used to estimate fuel consumption and air emissions. 
Models are also required to make projections into the 
future. Vehicle emission prediction software is well-de-
veloped in Europe and the US. However, they do not 
adequately reflect Australian conditions in terms of fleet 
mix, vehicle technology, fuel quality and climate. 

This article provides an overview of a new Australian 
vehicle emission software and its applications. The 
software predicts second-by-second fuel consump-
tion, air pollution and greenhouse gas emissions with 
a high resolution in time and space. It uses engine 
power and the change in engine power as the main 
model variables and includes all relevant vehicle 
classes. It links well with output from microscopic 
transport models.

A free “light” version of the software is available on 
request.
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more localised assessments. This 
short paper will focus on PΔP and its 
applications.

Tool Design.
The PΔP model uses engine power 
(P, kW) and the change in engine 
power (ΔP, kW) to simulate fuel 
consumption and CO2 and NOX emis-
sions for 73 vehicle classes (Smit, 
2013a). The vehicle classification 

is shown in Table 1. ADR emission 
standard is used as a proxy for ‘emis-
sion control technology level’.  ADRs 
refer to “Australian Design Rules”, 
which are the emission standards 
adopted in Australia.
The input to the model is speed-time 
data (1 Hz) and information on road 
grade, wind speed, vehicle loading 
and use of air conditioning (on/off). 
This information is used to compute 
the required (change in) engine 
power for each second of driving. 

The model was developed using 
empirical data from a verified 
Australian emissions database with 
about 2,500 second-by-second 
emission tests (1 Hz) and about 
12,500 individual aggregated ‘bag’ 
measurements.

E a c h  m o d a l  t e s t  c o n t a i n s 
approximately 30 minutes of labo-
ratory-grade second-by-second 
emissions and speed data based on 
real-world Australian driving cycles 
(Composite Urban Emissions Drive 
Cycle for Petrol or Diesel vehicles; 
CUEDC-P and CUEDC-D) that were 
developed from on-road driving 
pattern data in Australian cities. In 
addition to these real-world cycles, 
test data from the DT80 test cycle are 
used. The DT80 test is the Australian 
Transport Council’s in-service emis-

sions test that is conducted to assess 
emissions performance of on-road 
diesel vehicles1.  The DT80 test simu-
lates worst-case driving conditions 
(e.g. full open throttle accelera-
tion, high cruise speeds) in order to 
capture worst-case emission levels. 
This is useful data as it ensures that 
emissions data are available over 
the full range of operating conditions, 
including extreme accelerations.

All modal emissions test data have 

A hierarchy of vehicle emission 
models exists reflecting different 
levels of complexity and different 
types o f  app l icat ion.  These 
include ‘average-speed’ models 
(e.g. COPERT, MOBILE ), where 
emission rates (g/veh.km) are a 
function of mean travelling speed, 
‘ t raff ic-si tuat ion’ models (e.g. 
HBEFA, ARTEMIS), where emis-
sion factors (g/veh.km) correspond 
to particular traffic situations (e.g. 
‘stop-and-go-driving’, ‘freeflow’) and 
‘modal’ models (e.g. PHEM, CMEM, 
MOVES), where emission factors 
(g/s or g/ driving mode) correspond 
to specific engine or vehicle oper-
ating conditions . Whereas average 
speed and traffic situation models are 
designed to operate at the national 
or city network level, modal models 
are designed for local assessments.

Vehicle emission prediction software 
is well-developed in Europe and the 
US. However, they do not adequately 
reflect Australian conditions in terms 
of fleet mix, vehicle technology, fuel 
quality and climate. Large errors 
of up to a factor of 20 (Smit and 
McBroom, 2009), have been reported 
when overseas models are directly 
applied to Australian conditions 
without calibration. Therefore two 
software packages were recently 
developed for Australian conditions 
using comprehensive empirical 
data from major Australian emission 
testing programs. COPERT Australia 
has been designed to estimate 
motor vehicle emissions at regional 
and national level (Ntziachristos et 
al., 2013), whereas a power based 
model (PΔP) was developed for 

Table 1.  Vehicle Classification.

1The test is specified in Rule 147A of Schedule 1 of the National Transport Commission 
(Road Transport Legislation Vehicle Standards) Amendment Regulations (No. 1).

Main Category Sub Category Fuel Type Emission Control 
Standard

Passenger Car
Small (< 2.0 L); 
Medium (2.0 - 3.0 L); 
Large (≥ 3.0 L)

Petrol; Diesel
Uncontrolled; 
ADR27;ADR37/00-01; 
ADR79/00-05

SUV Compact (≤ 4.0 l); 
Large (> 4.0 l) Petrol; Diesel

Similar to “Passenger 
Car” but also including 
ADR36 (SUV-L) and 
ADR30 (SUV-Diesel)

Light 
Commercial 
Vehicle

GVM ≤ 3.5 t Petrol; Diesel
Uncontrolled;  
ADR36 (P); ADR30 
(D); ADR37/00-01; 
ADR79/00-05

Heavy Duty 
Truck

Medium;  
Heavy;  
Articulated

Diesel
Uncontrolled;  
ADR30; ADR70; 
ADR80/00; ADR80/02-05

Bus Light Bus (≤ 8.5 t); 
Heavy Bus (> 8.5 t) Diesel

“Vehicle emission 
prediction software is 
well-developed in Europe 
and the US. However, they 
do not adequately reflect 
Australian conditions in 
terms of fleet mix, vehicle 
technology, fuel quality 
and climate”
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Table 2. On-Road Power 
Algorithms in PΔP.

due to the use of a timer to delay 
command enrichment or oxygen 
storage in the catalytic converter.

Total driving cycle emissions for the 
vehicles selected for model devel-
opment must match average values 
of similar vehicles in the empirical 
database. A calibration factor φ is 
therefore incorporated in the soft-
ware. It is computed as the emission 
ratio of the vehicle used in model 
development to the average value 
for all tested vehicles of the same 
vehicle class. Vehicle emission rates 
in the simulation tool (et

*, g/s) are 
then computed as:

et
* = φ et   (eq. 3)

The next step is to include algorithms 
that predict second-by-second 
on-road engine power demand  for 
each vehicle. A motor vehicle requires 
engine power to overcome all resistive 
forces while driving and to run its 
accessories (e.g. air conditioning). 
On-road power algorithms in PΔP 
are adopted from Rexeis et al. (2005) 
with some modifications, and account 
for tyre rolling resistance (Prolres), 
aerodynamic drag (Pair), inertial 
drag (Pinert), gravitational resistance 
(Pgrade), drive train resistance (Ptransm) 
and power required to run auxiliaries 
(Paux), as is shown in Table 2.  

The power components are predicted 
for each second of driving and require 
input on speed, acceleration, road 
grade, wind speed, vehicle mass 
(including loading) and use of air 
conditioning. These algorithms also 
require vehicle specific information 
such as aerodynamic drag coefficient, 
frontal area and rolling resistance 
coefficients. This vehicle specific 
information was collected for all 
vehicles and hard coded into the 
software.

The simulation will check for the 
occurrence of unrealistically high 
engine power during the simulation. 
This could occur, for instance, when 
a light-duty vehicle driving cycle 
is used for an articulated truck. In 
this case the truck cannot deliver 
the acceleration rates required to 
follow the speed-time input data and 
the rated power of the truck will be 
exceeded. 

Model validation and model verifi-
cation showed that the performance 
results for the PΔP modeling soft-
ware results are good with average 
R2 values of 0.65 and 0.93 for NOX 
and CO2/Fuel Consumption, respec-
tively (Smit, 2013a). These results 
compare well and are generally 
similar or better as compared with 
reported results from other models 
(e.g. Atjay et al., 2005; Silva et al., 
2006). The validation showed that the 
PΔP emission algorithms are robust 
with respect to prediction errors 

been subjected to a verification and 
correction protocol (Smit, 2013b). 
This includes time re-alignment, veri-
fication of emission traces (analyser 
drift, clipping) and computation and 
verification of test statistics (e.g. 
Brake Specific Fuel Consumption  
(BSFC) and mean thermal effi-
ciency). For each vehicle class, one 
representative vehicle is selected for 
model development.

First, a mathematical relationship 
between engine power and emission 
measurements during the actual tests 
is developed. Engine power (kW) is 
computed for each second of driving 
using dynamometer load algorithms 
in combination with algorithms to 
simulate internal vehicle losses due 
to drive train and tyre rolling resist-
ances. The vehicle emission rate 
(et, g/s) is then fitted to the following 
equation: 

 
Pt represents engine power (kW) at 
time t and is a function of operational 
variables (vehicle speed, acceler-
ation) and vehicle characteristics 
(vehicle mass). For idling conditions 
(speed = 0 km/h) a constant average 
value (g/s) is used. For non-sta-
tionary driving conditions (moving 
vehicle) a multivariate time-series 
regression model has been fitted 
using the generalised least-squares 
method, where β0, …, β5 repre-
sent the regression coefficients. 
An autoregressive model is used to 
account for autocorrelation effects on 
the residuals. The variable ΔPt quan-
tifies the change in power over the 
last three seconds of driving and is 
computed as:

ΔPt = Pt - Pt-2  (eq. 2)

ΔPt aims to include “history effects” 
into the model. This is important 
because vehicle operating history 
can play a significant role in an 
instantaneous emissions value, e.g. 

On-Road Power Algorithms
Prolres = ( τ0 + τ1 vt + τ4 vt

4 ) g M vt  

Pair = 0.5 ρ Cd A Δvt
3

Pinert = ( Mveh Λ + Mload ) vt at

Pgrade = g M vt G 

Ptransm = fac P* ( η - 1)            for P* < 0

Ptransm = fac P* ( ( 1/η ) - 1)     for P* ≥ 0

Paux = ω κ Prated

Input variables:

vt 

va 

Δvt 

G 

ω 

Mload

=

=

=

=

=

=

Vehicle speed (m/s)

Air speed (m/s)

vt - va (m/s)

Road gradient (%)

Auxiliaries on/off factor (value is 1 or 0)

Mass of the payload and/or 
passengers and luggage (kg)

Internal/derived variables:

at

g 

η

ρ 

Λ

=

=

=

=

=

Acceleration (m/s2)

Gravitational constant (9.81 m/s2)

Transmission efficiency (-)

Air density (kg/m3)

Rotating mass factor (function of vehicle speed) (-)

Vehicle parameters:

A

Cd

fac

M

Mveh

P*

 
Prated

τ0, 1, 4

 
κ

=

=

=

=

=

= 

=

=

 
=

Frontal area (m2)

Aerodynamic drag coefficient (-)

Technology correction factor (-)

Vehicle mass including Load (kg)

Tare mass (kg)

Total power to overcome the driving resistances without 
transmission losses (W)

Rated engine power (W)

Rolling resistance Coefficients (function of vehicle loading)

Ratio of rated engine power to power demand for auxiliaries 
(airco, compressor) (-)

                      

α
 

vt = 0
et = {β0 + β1 Pt + β2 ΔPt+ β3 Pt

2

                    
+ β4 ΔPt

2
 + β5 Pt ΔPt + ε

 
 

          
where ε ~ ARMA(p, q)

 

vt > 0

 

(eq. 1)
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program exposed drivers to a finan-
cial intervention to improve driving 
around safety outcomes. Assessment 
of the emissions impacts required a 
computationally-efficient tool that 
can readily use millions of second-
by-second records as input. PΔP 
was fit-for-purpose after neces-
sary GPS data preparation, which 
mainly involves imputation of missing 
records and smoothing of speed-time 
data. 

Analysis of the emission results for 
102 drivers before and after the inter-
vention demonstrates that changes 

in total travel (Vehicle Kilometers 
Travelled, VKT) and changes in 
driving behaviour both affect emis-
sion impacts. The preliminary results 
indicate that VKT is the main factor 
driving the change in CO2 emissions 
in this type of intervention, whereas 
driving behaviour changes also affect 
emissions. Figure 3 show that the 
overall emission change is a function 
of a large number of individual driving 
patterns in the before and after inter-
vention phase, each with their own 
unique sequence of idling, accelera-
tion and speeds. However, changes 
in mean CO2 emission rates (g/km) 

(RMSE) and goodness-of-fit (R2) and 
sometimes even exhibit improved 
performance as compared with the 
results from model verification. 

Application.
As a minimum, PΔP requires 1 Hz 
speed-time data and a selection of 
the appropriate vehicle class. This 
information can be obtained from 
various sources:

• Microscopic transport models
• On-road GPS measurements
• Drive Cycles

PΔP + Transport Models.
PΔP has been combined with a 
microscopic simulat ion model 
(Advanced Interactive Microscopic 
Simulator for Urban and Non-Urban 
Networks or AIMSUN) to esti-
mate emissions in Adelaide CBD in 
morning peak hours (Smit, Casas and 
Torday, 2013). The traffic software 
generated almost 10,000 second-by-
second driving patterns for different 
vehicle types (cars, trucks, buses).  
PΔP then estimated fuel consump-
tion and emissions for each driving 
pattern. The highest predicted fuel 
consumption and emissions were 
associated with driving behaviour 
that involves (strong) accelerations 
and traffic conditions that impose 
significant queuing and idling. Driving 
at (approximately) constant speed 
and deceleration manoeuvres are 
associated with lower fuel consump-
tion and emissions. This is illustrated 
in Figure 1.

The emission predictions were then 
used to identify air pollution or green-
house gas ‘hot spots’ in the network, 
and to track how emissions at 
specific locations change over time. 
An example is shown in Figure 2.

PΔP + GPS data.
PΔP has been combined with a large 
database of on-road driving data 
to assess the emission impacts of 
an intervention program where 102 
Sydney drivers were monitored for 
five weeks using a GPS device (Smit, 
Greaves and Allison, 2014). The 

TOP: Figure 1a. Fuel consumption versus average speed for large petrol 
passenger cars (100m drive segments).
BOTTOM: Figure 1b. 9 Driving Patterns (DPs) for specific points
Source: Smit, Casas and Torday, 2013 
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Australian on-road fleet. The results 
are visually summarised in Figure 
4. The study suggests that reduced 
speed limits can result in significant 
CO2 emission benefits for light-duty 
vehicles under free-flow motorway 
conditions, but that the results are 
less pronounced for more congested 
situations (traffic volume over 1000 
vehicles per lane per hour).

Finally, PΔP has been used in combi-
nation with COPERT Australia to 
assess the impacts of tunnel emis-
sions on local air quality (Smit, 
2014). Whereas positive road grade 
in tunnels significantly increases fuel 

consumption and emissions, air flow 
in the direction of traffic significantly 
reduces the aerodynamic drag and 
therefore reduce fuel consumption 
and emissions. PΔP was therefore 
used to compute correction factors 
for the combined effect of in-tunnel 
road grade, air flow (piston effect) 
and driving conditions. 

Figure 5 shows the input and the 
second-by-second modelling results 
for a 4.7 km tunnel. The in-tunnel 
high speed driving conditions were 
replicated using a specific drive 
cycle that was developed from over-
seas on-road measurements on 
an uncongested highway with an 
80 km/h speed limit. The simula-
tion showed that the piston effect 
reduced emissions by 15-35%, road 
grade increased emissions by about 
20-35%, depending on the vehicle 
class and pollutant. Overall, fleet 
emissions in the tunnel were reduced 
by 0-10%.

To see the references of this article, follow this link: 
www.sae-a.com.au/VTEReferences

Figure 4:  Mean CO2 vehicle emis-
sion rates for different speed limits 
(80, 100, 120 km/h) and traffic 
conditions.
FF = free flow
MC = more congested (including 
95% confidence intervals).
Source: Boulter and Smit, 2013 

Figure 5: Simulation of the impacts of road grade, air flow and driving behav-
iour in a tunnel, “Base” represents the situation without road grade or air flow. 
Source: Smit, 2014 

Figure 3. Emissions from a large 
petrol passenger car ADR37-01. 
Left: CO2 emission factors for all 
GPS driving patterns for one driver 
as function of average speed.
Right: The mean emission factors 
in the before and after phases 
including 95% confidence interval 
and p-value.
Source: Smit, Greaves and Allison, 2014 

were not statistically significant in this 
case (p > 0.05).

While it has become increasingly 
easy to collect disaggregated driving 
behaviour information, it is still 
complex to quantify emissions. It was 
concluded that the PΔP tool greatly 
simplifies this computation process, 
while still maintaining a sufficient 
level of disaggregation in the results 
to identify the key components 
affecting emissions.

PΔP + drive cycles.
Boulter and Smit (2013) used PΔP 
to assess the emission impacts 
of Variable Speed Limits (VSL). 
Established drive cycles for specific 
traffic situations were used to esti-
mate the impacts of VSL for the 
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A free “light” version of the 
software is available on request

Figure 2:  Predicted Total NOX Link 
Emissions in the Adelaide CBD 
Network for Two Time Periods.
Left:  07:00-08:00 
Right:  08:00-09:00
Source: Smit, Casas and Torday, 2013


