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A B S T R A C T   

On-board emission testing data for two ocean-going vessels is used to assess the performance of a new Australian 
ship emissions model, and to also assess the impact of local currents on emission predictions. Prediction per-
formance is only marginally affected by AIS post-processing method and inclusion of local current information. 
Model performance was assessed for three different aspects, fuel-based emission factors (g/g CO2), engine work- 
based emission factors (g/kWh) and distance-based emission factors (g/km). Analysis of fuel-based and engine- 
work based emission factors suggest good performance and small to reasonable mean prediction errors for CO2 
(±10%), PM10 (±15%) and SO2 (±20%). For NOx and CO, on-board emissions testing suggest that model 
emission factors are biased high and low with mean prediction errors +60–70% and − 60%, respectively. The 
results for distance-based emission factors were not considered to be meaningful due to spatial and temporal 
inaccuracies in linking on-board testing with the AIS data that could not be resolved. Given the importance of AIS 
data as input to fuel and emissions modelling, it is recommended that the spatial and temporal accuracy of AIS 
data is investigated and confirmed in future studies. Moreover, the differences found in this study between model 
predictions and on-board measurements highlight a few limitations in application of generic fleet-based models.   

1. Introduction 

Shipping is a significant source of air pollution and greenhouse gas 
emissions. Ships use large diesel engines that run on heavy bunker fuels, 
generally without emission controls. Overseas studies have consistently 
found that ships have significant effects on local air quality in and 
around port areas (e.g. EEA, 2013). Corbett et al. (2007) estimated that 3 
to 8 per cent of global PM2.5 related mortalities are attributable to ma-
rine shipping. Liu et al. (2016) reported that container ships and bulk 
carriers are the main contributors in East Asia for all pollutants, except 
methane, leading to an estimated 14,500–37500 premature deaths per 
year. 

In previous research (DES, 2019), an Australian ship (exhaust) 
emission model was developed that uses detailed data on local ship 
movement and ship characteristics. The model first estimates fuel use 
and subsequently uses fuel-based emission factors (g/kg fuel) to 

estimate emissions. The model is based on extensive literature review 
and model parameters were calibrated at fleet level using an energy 
balance approach. In this study, model performance is evaluated using 
independent on-board emissions testing data for two ocean-going ves-
sels. In addition, new avenues for model improvement are explored, 
which includes inclusion of the impacts of sea currents. 

As will be discussed in Section 2.2, the Australian ship emission 
model has several communalities compared with other methods used 
internationally. In terms of ship classification, for instance, it explicitly 
considers engine speed category, fuel type and emission control stan-
dard (Grigoriadis et al., 2021), but also ship type, engine type and mode 
of operation (EMEP/EEA, 2016; EMEP/EEA, 2021; CARB, 2022). In 
other aspects the approach can be slightly different. For instance, the 
Australian model directly estimates fuel use (kg/min) as a function of 
ship operating conditions (engine load, operating mode) and then esti-
mates greenhouse gas and air pollutant emissions using fuel-based 
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emission factors (g/kg fuel). These emission factors are constant above 
20% engine load (MCR) but increase below 20% MCR for pollutants 
such as NOx, PM, CO and HCs. 

This low load emission factor adjustment is also used in US emission 
inventories (CARB, 2022; US EPA, 2022). In comparison, Grigoriadis 
et al. (2021) used separate emission algorithms for each air pollutant, 
expressing emissions as mass of pollutant per unit of energy produced by 
the engine. In this model, the base emission factors (g/kWh) are constant 
but vary with engine, fuel and emission control and are modified ac-
cording to operational engine load. Ship emission inventory methods 
used in the USA (CARB, 2022; US EPA, 2022) also use emission factors 
expressed as g/kWh, where operational engine load is commonly esti-
mated by combining (default or propellor/admiralty law derived) load 
factors with vessel-specific rated engine power. The European Emission 
Inventory Guidebook (EMEP/EEA, 2016; EMEP/EEA, 2021) offers both 
options (fuel-based or load-based emission factors) for its most detailed 
Tier 3 emission inventory method. 

2. Method 

2.1. On-board emissions testing 

The on-board emission testing was carried out in October and 
November 2015 on two large cargo ships under different operating ship 
conditions at berth and during manoeuvring and cruising. The first on- 
board emission measurements were conducted on a general cargo ship 
during her voyage from Port of Brisbane to Port of Gladstone, while the 
second one was performed on a bulk carrier during her passage from 
Gladstone to Newcastle. Table 1 presents ship characteristics for two 
vessels with on-board emissions testing. More detailed information 
about the two measured vessels in this campaign can be seen in the 
previous studies (Chu-Van et al., 2018, 2019). 

Emission sampling points were located on a deck in the machinery 
room where exhaust gas from the main engines was sampled and 
measured continuously. The sampling position for the general cargo ship 
was located before the economiser (approximately 10 m of exhaust pipe 
from the exhaust manifold of the main engine). For the bulk carrier the 
sampling position was about 0.5 m after the turbocharger of the main 
engine. At each exhaust sampling position, two sampling holes were cut 
in the exhaust channel for both particle and gaseous phase measure-
ments using the same configuration for the two vessels. 

The raw hot exhaust gas was sampled directly to the DMS 500 
(Cambustion, Cambridge, UK) dilution systems (2-stage dilution sys-
tems) from the first sampling hole. Raw exhaust was first diluted with 
hot air at a temperature of 150 ◦C and at a fixed dilution ratio (DR) of 5. 
The diluted sample was then transferred to the second dilution stage via 
a heated sampling line to prevent condensation of water and volatile 
organic compounds (VOCs). The secondary dilution stage was a high 
ratio rotating disc diluter with a DR range of 20–500. A DMS 500 was 
used to measure particle number size distributions in the size range of 5 
nm–1.0 μm with a sample frequency of 1 Hz. The second sampling hole 
was used for measurements by a Testo 350 Portable Emission Analyser, 
and by a DustTrakTM Aerosol Monitor 8530 (TSI Incorporated, Min-
nesota, USA) and Sable CO2 Monitor through an Ejector Diluter (Dekati, 
Kangasala, Finland). The concentration of gases, including sulphur di-
oxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), oxygen (O2) 
and CO2 in the raw exhaust were measured by a Testo 350 Portable 
Emission Analyser, while a DustTrakTM Aerosol Monitor 8530 was used 
to measure mass concentrations of PM10, PM2.5 and PM1.0. More speci-
fications of measurement devices used in the present study can be seen 
in our previous studies (Chu-Van et al., 2018, 2019). 

2.2. Ship emission model 

An energy-based ship (exhaust) emissions model was used to esti-
mate fuel use and emissions at a high resolution for a broad range of air 

pollutants for ships operating in fifteen strategic port areas in Queens-
land, Australia, over a full year (2015). Emission simulations were 
conducted at a minute-by-minute resolution for individual ships oper-
ating in the port areas, after which emissions were aggregated to 1 × 1 
km grid cells and allocated to each hour of the year. A full description 
and parameterisation of the fuel and emission prediction algorithms for 
the various ship types can be found in DES (2019). Table 2 presents the 
fuels use algorithms for the two ships investigated in this study. 

Building on earlier research (Grigoriadis et al., 2021; Herzfeld et al., 
2016), the fuel algorithms first predict typical fuel consumption rates for 
different ship classes in four modes of operation, ‘transit’, ‘manoeu-
vring’, ‘berth’ and ‘anchor’. Fuel rates for moving ships in transit are 
simulated as a function of ship class, ship size, service speed and actual 
vessel speed. The predicted fuel rates represent fleet average values, but 
real-world variation will occur. For instance, weather and sea conditions 
can significantly alter the power demand in the main engine propulsion 
system. 

Fuel rates for stationary ships are simulated as function of ship class 
and ship size. Once in port, power requirements for ships are usually 
reduced, but can still vary depending on the type of ship activity, such as 
hoteling, cargo refrigeration and loading operations (cargo pumps, 
cranes). Auxiliary engines are usually used for electric power produc-
tion, while the main engines are shut down, and the boiler generates 
steam. The main engine is not used when ships are at berth or at 
anchorage, except for diesel-electric ships, where main engines may be 
used to generate auxiliary power. 

The main ocean-going vessel (OGV) types considered in the model 
are: ‘bulk carrier’, ‘container’, ‘cruise ship’, ‘general cargo’, ‘reefer’, 
‘roro’ (roll-on-roll-off), ‘tanker (oil)’, ‘tanker (other)’, ‘vehicle carrier’ 
and ‘other’. Ship engine type is broadly defined as: 1) main engine (ME), 
auxiliary engine (AE) and boiler (BL), 2) slow speed (SS), medium speed 
(MS) and high speed (HS) diesel engines, or gas/steam turbines (GAS/ 
STM), and 3) International Convention for the Prevention of Pollution 
from Ships (MARPOL) Annex VI NOx emission certification limits, which 
relate to year of vessel construction, i.e. ‘pre-control’ (<2000), ‘Tier I’ 
(2000–2010) and ‘Tier II’ (2011+). Marine fuel oils are classified as 
follows (intermediate) residual fuel oil (RO), marine distillates (MD) and 
ultra-low sulphur diesel (ULSD). The fuel use and fuel-based emission 
factor values are similarly defined as a function of engine system, fuel 
type and MARPOL Annex VI emission certification limit (NOx only), as 
well as operating conditions. 

A ship energy-balance approach was deployed to calibrate (and 
expand) model parameters of the empirical functions (Table 2) to 
properly reflect the OGV fleet operating in Queensland waters. A ship 
information database was purchased from IHS Markit. These data pro-
vide detailed information for each ship that is operating in near the 
Queensland coast (<50 km). First, plausible ranges in ship energy use 
were defined. Ships travelling at service speed1 typically use 80–90% of 
Maximum Continuous Rating (MCR). This is the first verification point 
in the energy balance. Second, plausible ranges of auxiliary engine 
power were determined through analysis of the IHS database and 
literature review. The ratios of installed auxiliary engine power to MCR 
were computed for all ships and plausible ranges were defined as the 10 
and 90-percentile values for each ship class. Subsequently these mini-
mum and maximum ratio values were multiplied with reported ranges of 
auxiliary load factors for different modes of operation. 

Subsequently, a typical ship operational cycle (speed-time profile, 
75 h), including all four modes of operation (cruising, manoeuvring, 
berth, anchor), was developed and used to predict minute-by-minute 
energy use for all individual ships operating near Queensland in 2015 
(5510 vessels in total). Estimated fuel use (kg/min) was then converted 
to energy use (kW) using information on the fuel type, lower heating 

1 Service speed is defined as the speed that the ship is capable of maintaining 
at sea in normal weather conditions, and at normal service draught. 
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value (LHV, MJ/kg fuel) and engine and fuel type dependent thermal 
efficiency. A robust linear regression analysis was applied to minimise 
prediction errors at fleet level and adjust the fuel use model parameters 
for the different ship types. 

The model (DES, 2019) incorporates fuel-based emission factors (g of 
pollutant per kg of fuel burned) for air pollutants and greenhouse gases 
based on a review of published research reports and scientific papers 
(CO2, NOx, SO2, PM10, PM2.5, VOCs, CH4, N2O, Pb, As, Ni, V, Mn, Cd, 
PAHs (sum), benzo(a)pyrene, 1,3-butadiene, benzene, formaldehyde, 
toluene, xylenes and ethylbenzene). The emission factor values are a 
function of engine system (ME, AE, BL), engine type (SS, MS, HS, GAS, 
STEAM), fuel type (RO, MD, ULSD) and MARPOL Annex VI emission 
certification limit (NOx only). These emission factors are combined with 
estimates of fuel consumption for each minute of individual ship activ-
ity. This is done for all individual ships that operate in the study area in a 
selected base year and emissions are aggregated to give total emission 
loads. Total emission loads are aggregated at grid cell level and calcu-
lated for each hour of the year. 

2.3. Ship movement data 

In addition to ship parameters such as ship type and size (gross 
tonnage), ship emissions are critically dependent on vessel speed in a 
non-linear fashion. Input data regarding location and speed is therefore 
required at a high spatial and temporal resolution. 

The on-board emission testing program did not collect data on 
geographic location or vessel speed and course. On-board emissions 
testing of on-road vehicles (PEMS) typically collect time-resolved geo- 
spatial data (e.g. location, road gradient) through access to the onboard 
diagnostics (OBD) system or the use of GPS sensors (Smit et al., 2022). In 

contrast, on-board ship emission measurements generally do not include 
a GPS (Khan et al., 2013). A recent paper (Grigoriadis et al., 2021) 
reviewed available datasets for development of ship emission factors, 
but the use of GPS as part of the measurement procedure was not 
mentioned. Another recent paper (Yang et al., 2022) did use GPS 
equipment, but this is one of the first papers to do so. 

Therefore, ship movement information was sourced from Automatic 
Identification System (AIS) data. AIS is a Very High Frequency (VHF) 
radio broadcasting system, which enables AIS equipped vessels and 
shore-based ground stations to send and receive identifying information. 
This is known as terrestrial AIS data. In Australia, the Australian Mari-
time Safety Authority (AMSA) collects comprehensive AIS data. 
Specially equipped satellites can also record the same AIS data. AIS is a 
mandatory collision avoidance system on ships larger than 300 gross 
tonnes. Each ship transmits a signal giving details regarding the ship’s 
identity, type, position, course over ground (COG), (spot) speed over 
ground (SOG) and other safety-related information at frequent intervals. 
Unique Mobile Maritime Service Identity (MMSI) numbers are sent in 
the AIS messages. 

Previous research (Emmens et al., 2021) has shown that AIS data can 
be unrealiable and suffer from various issues such as errors (noise, 
human mistakes) or lack of signal (equipment failure) in static, dynamic 
and voyage related information such as position and SOG. In this study, 
a 1-min resolution is used for fuel use and emission predictions. The first 
step in emission prediction is the application of an AIS verification and 
correction protocol to improve data quality and plug data gaps. As is 
evident from the gaps in Fig. 1, the AIS data regularly suffers from data 
loss (non-connected points and lines). 

To address this issue, locational data and AIS speed data were 
imputed with two different approaches to obtain high resolution loca-
tion and speed data. Latitude-longitude (WGS84) coordinates provided 
by AIS were converted to UTM (zone 56 S). For gaps less than or equal to 
2 h duration, UTM coordinates were linearly interpolated in space (time- 
steps of equal distance) using the last and first available UTM co-
ordinates at either end of the gap. Interpolations (≤2 h) were applied to 
a significant portion of the AIS data (about 45–55%) and generally 
applied to brief AIS gaps of 1–3 min. For data gaps larger than 2 h, a 
similar spatial interpolation is applied using a ‘continuation of last 
recorded speed’ approach. First the anticipated total distance travelled 
with continued last available speed is computed and compared with the 
actual distance between the coordinates at either end of the data gap. If 
the difference between these two computed distances is less than ±25%, 
then a linear spatial interpolation is considered reasonable.2 In-
terpolations (>2 h) were applied to a small portion of the AIS data (a few 
percent) and concerned a single AIS gap of 4.3 h for vessel 1 and 2.4 h for 
vessel 2, both at cruise speed. 

The spatial interpolation procedure resulted in a complete minute- 
by-minute time-series of geographical locations for the entire journey, 
after which (travel) speed and distance travelled were computed. Travel 
speed was computed using distance travelled between two subsequent 
UTM coordinates (m) and a fixed time difference (60 s). A five-pass 

Table 1 
Ship characteristics for two vessels with on-board emissions testing.  

ID Type GT Length (m) Service Speed (knots) Year of Manufacture Engine Type Propulsion MCR (kW) Auxiliary (kW) 

Vessel 1 Bulk Carrier 27,198 188 15 2002 SSD Oil DD 6880 1380 
Vessel 2 General Cargo 31,028 185 16 1981 SSD Oil DD 12,080 3000  

Table 2 
Fleet-average fuel consumption prediction algorithms a.  

Description Vessel 1 CSL Melbourne 
Bulk Carrier 

Vessel 2 CSL 
Thevenard 
General cargo 

Main engine fuel 
consumption for 
machinery/fuel type i (kg) 

0.27S0.52 Δd pi (ν/νss)
3 0.14S0.60 Δd pi (ν/νss)

3 

Auxiliary boiler fuel 
consumption (kg) 

φb0.006SΔt /(τ η ) φb0.011SΔt /(τ η )

Auxiliary engine fuel 
consumption for 
machinery/fuel type i (kg) 
- Transit 

0.013 S0.52 Δd pi 0.007 S0.60 Δd pi 

Auxiliary engine fuel 
consumption for 
machinery/fuel type i (kg) 
– Non-Transit 

( φaψ 0.004 SΔt − Fboiler)

px 

ψ =

3.3 (τ η 0.004 S Δt)− 0.35 

( φa 0.007 SΔt − Fboiler)

px 

S = vessel size or volume, expressed as (unit-less) gross tonnage (GT); Δd = total 
distance traversed by the ship (km); pi = proportion of total fuel used by ma-
chinery/fuel type x (− ); ν = actual (average) vessel speed (km/h); νss = vessel 
service speed (km/h); φa = auxiliary engine manoeuvring correction factor (− ); 
φb = auxiliary boiler manoeuvring correction factor (− ); ψ = calibration func-
tion (− ); Fboiler = auxiliary boiler fuel consumption (kg); Δt = time resolution 
(h); η = boiler thermal efficiency (− ); τ = fuel specific lower heating value (MJ/ 
kg). 

a A full description and parameterisation of the fuel and emission prediction 
algorithms for the various ship types can be found in DES (2019), which can be 
accessed via https://nla.gov.au/nla.obj-1371565938/view. 

2 A special situation occurs when a vessel remains in the same 1 × 1 km grid 
cell for a long time. Linear spatial interpolation is applied when the first and last 
recorded speeds at either end of the gap are less than 2.5 km/h. The inclusion of 
these large data gaps is important because it ensures that time periods with 
berth/anchorage are captured in the emissions estimation. This situation did 
not occur for the two vessels considered in this study. 
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T4253H filter (Velleman, 1980) was then applied to remove noise and 
unrealistic variations in travel speed. Ship travel speeds less than 0.5 
km/h are set to zero. A second approach was to use reported spot speeds 
in the AIS data (SOG, ‘speed over ground’), and to use both linear and a 
cubic spline imputation to estimate speed values for missing SOG data. 
The cubic spline speed estimates were capped at the vessel service speed 
to prevent unrealistic speed estimates. 

The result is a complete time-series for each ship journey in 1-min 
time steps of date-time, location (WGS84 and UTM), vessel speed 
(different methods) and associated vessel course over ground. This is 
shown in Fig. 2. There are four vessel speed and course definitions: AIS 
speed/course over ground (unmodified, with missing data gaps), AIS 
speed/course over ground (linear imputation), AIS speed/course over 
ground (cubic spline imputation) and location derived (UTM) speed/ 
course over ground (T4253H filter). 

2.4. Vessel speeds corrected for current 

Engine power is dependent on speed on water, not speed over ground 
provided by AIS. Speed on water was estimated in this study to examine 
the impact on emission predictions. Vessel speeds were corrected for 
strength and course of local sea currents (drift). Water vectors were 
derived from 4 km resolution eReef model output (Herzfeld et al., 2016; 
eReef, 2021). Herzfeld et al. (2016) provides a detailed model descrip-
tion, including model calibration and validation. Briefly, eReef is a near 
real time regional hydrodynamic and biogeochemical model of the Great 
Barrier Reef developed using Sparse Hydrodynamic Ocean Code 
(SHOC). The model provides gridded information about spatio-temporal 
variation in the flow, driver (wind), and physicochemical properties 
(temperature, salinity, currents, density) covering the Great Barrier 
Reef. The three-dimensional model is based on finite difference solution 

Fig. 1. AIS locational data shown as blue dot points (Vessel 1) and red dot points (Vessel 2) for two ships with on-board emission measurements. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Processed AIS locational data Vessel 1 (left) Vessel 2 (right), white line shows original AIS data, red line shows spatially imputed data. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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of primitive equations with hydrostatic and Boussinesq approximations. 
The hydrodynamic model uses the Australian Bureau of Meteorology’s 
numerical weather prediction models (ACCESS-R) to provide surface 
forces such as the wind imposed on the model. The model has been 
validated with tide gauges (sea surface height), moorings (e.g. velocity), 
and ocean gliders (e.g. temperature and salinity) and has been used in 
several regional hydrodynamic studies (Baird et al., 2020; Skerratt et al., 
2019; Ghosh et al., 2022). The hourly model outputs are available on 4 
km grid horizontal resolution and fixed vertical z-coordinate with 
varying resolution (eReef, 2021). 

The depth-averaged velocity covering the top 12.5 m below the mean 
sea level, i.e., the closest elevation to the draft of the vessels, was 
selected to represent the mean surface flow. A linear interpolation 
scheme was employed in horizontal space and time to obtain the water 
velocities along vessel positions (Suara et al., 2020). Vessel positions 
close to land and outside the spatio-temporal coverage of the eReef 
model were assumed to have constant and uniform water velocities, 
corresponding to last valid values along the vessel course. Vessel 
movement outside the eReef model area correspond to about a 20 km 
distance and 70 min. 

Vessel position (UTM) was retrieved for each minute and each ship, 
as well as data on local currents at that location. These data were pre-
sented as displacement vectors in a Cartesian coordinate system 
(Easting, Northing) using information on speed (magnitude) and course 
over ground (angle). Easting (E) and Northing (N) vector components 
(orthogonal projections of speed) were computed for each minute for 
both vessel and local current. Speed on water was determined for each 
minute as the square root of the sum of the squared differences between 
vessel and local current (E, N) vector components. 

2.5. Fuel use and emission simulation 

To explore the impacts of different AIS post-processing methods, 
including consideration of local currents, the fuel use and emission al-
gorithms were combined with the different time-series of vessel speed:  

• UTM: Location derived travel speed/course over ground (T4253H 
filter)  

• SCL: AIS speed/course over ground (linear imputation)  
• SCS: AIS speed/course over ground (cubic spline imputation)  
• UTM Current: Current corrected location derived travel speed/ 

course over water  
• SCL Current: Current corrected AIS speed/course over water (linear 

imputation) 

Each time-series of vessel speed created different estimates of fuel 
use and emissions. Engine power (kW) was also estimated through 
multiplication of predicted fuel consumption (kg/s) with the lower 
heating value (40.5 MJ/kg), thermal engine efficiency (46%) and a unit 
conversion factor (1000). 

2.6. Performance assessment 

Various goodness-of-fit statistics can be used to assess model per-
formance. In this study model performance is assessed with the linear 
Pearson correlation coefficient (r), the coefficient of determination (R2), 
the mean absolute error (MAE), the mean prediction error (MPE) and the 
normalised root mean squared error (NRMSE). 

The following rationale was considered to ensure an appropriate 
assessment. The aim of the paper is to compare model predictions with 
observations. To make sure the comparison is ‘fair’ and useful, the scope 
of the evaluation is guided by the intended application of the model for 
which it is designed. The emission model is not designed to make ac-
curate predictions for individual vessels at a high time resolution (1-min 
time steps). Rather the model aims to provide accurate emission esti-
mates for all OGVs (fleet level) operating in a specific study area over for 

instance a year. In terms of model application, the smallest spatial area 
of interest is typically a 1 × 1 km grid cell. 

A raster file with total emission predictions at this spatial resolution 
can serve as input for air quality modelling and facilitates presentation 
of emission predictions results on maps. The minute-by-minute observed 
and predicted emissions data were therefore aggregated to represent 
vessel movement for approximately 1 km, denoted here as segments. For 
each of these 4050 trip segments, start and end time, total distance (km), 
total travel time (min), average speed (knots) and observed and pre-
dicted emission factors, expressed as (k)g/km, were computed. Segment 
distance varied between 800 and 1200 m and segment duration varied 
between 2 and 18 min. Average vessel speed varied between 2 and 14 
knots. The minute-by-minute emission values were also aggregated over 
the three measurement time periods for each vessel to examine model 
performance over a longer distance and period. Distance varied between 
17 and 84 km and segment duration varied between 64 and 366 min. 
Finally, we examined how the model performs at ‘fleet level’. Given the 
small sample size, fleet level is narrowly defined as the average result for 
the two vessels combined. 

Model performance is assessed in three ways:  

1. Normalised for fuel use using CO2 emissions as a proxy.  
2. Normalised for engine power.  
3. Normalised for travel distance as estimated with processed AIS vessel 

speeds. 

Model performance is predicted for three different aspects, fuel- 
based emission factors (Method 1, g/g CO2), work-based emission fac-
tors (Method 2, g/kWh) and distance-based emission factors (Method 3, 
g/km). 

Method 1: This method quantifies the prediction errors in fuel-based 
emission factors using CO2 as a proxy for fuel consumption. Both 
observed and predicted emission factors (g/min) were normalised for 
CO2 (g/min) and expressed as an emission ratio. The normalised pre-
dicted and observed emission ratios were then averaged for each MCR 
power bin (see below) and compared. 

Method 2: This method quantifies the combined prediction errors 
for fuel consumption and fuel-based emission factors. Both observed and 
predicted emission factors (g/min) were normalised for main engine 
power and expressed as % MCR. The normalised emissions data were 
then allocated to 1–100% MCR bins (5% steps) to ensure similar oper-
ating conditions, after which the predicted and observed emission fac-
tors were averaged for each bin and compared. 

Method 3: This method quantifies the prediction errors for the entire 
emission prediction process, namely AIS processing, prediction of fuel 
consumption and applying fuel-based emission factors. 

3. Results 

3.1. The impact of AIS post-processing method on predicted vessel speed 
and power 

The six different AIS post-processing methods (Section 2.5) can have 
a significant impact on the estimated vessel speeds, as is shown in Fig. 3. 
The grey polygon areas show the range (minimum – maximum) in 
estimated vessel speeds for all methods combined in cumulative time 
steps (minute) for the three measurement periods for each vessel. 

The mean absolute difference between the maximum and minimum 
predicted speed for each minute is 0.3 knots for both Vessel 1 and Vessel 
2. The maximum absolute differences are 1.2 knots (Vessel 1) and 1.8 
knots (Vessel 2). The corresponding relative (maximum) differences are, 
on average, 3% (Vessel 1) and 4% (Vessel 2) and the maximum values 
are 18% (Vessel 1) and 30% (Vessel 2). Regarding the impact of local 
currents on vessel speeds, this is negligible for vessel 1 with an impact of 
less than 0.06% or 0.01 knots (n = 70). For vessel 2 (n = 493), the 
impacts are more significant varying from a speed reduction of 
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approximately − 30% (1.2 knots) to a speed increase of approximately 
+15% (0.5 knots). 

Given the non-linear relationship between vessel speed and main 
engine power, small variations in vessel speed can have a more pro-
nounced impact on main engine power and hence fuel consumption and 
emissions. This is shown in Fig. 4. 

The mean absolute difference between the maximum and minimum 
predicted main engine power for each minute is 229 kW for both vessels. 
The maximum absolute differences are 863 kW (Vessel 1) and 2656 kW 
(Vessel 2). The corresponding relative differences, expressed as a per-
centage of rated engine power (MCR) are, on average, 3% (Vessel 1) and 
2% (Vessel 2) and the maximum values are 13% (Vessel 1) and 22% 
(Vessel 2). Regarding the impact of local currents on estimated main 
engine power, the relative impact is small for vessel 1 with less than 
0.002% of MCR or less than 0.2 kW (n = 70). For vessel 2 (n = 493), the 
impacts are significant varying within approximately ±10% of MCR 
(±1200 kW). 

Fig. 4 also shows that the general direction of predicted and 
measured power roughly aligns, but that the differences between 
measured and (mean) predicted power can be large. The level of 
agreement varies significantly from reasonable (vessel 1, period 2 and 
vessel 2, period 1) to poor (vessel 1, period 1 and vessel 2, period 2). The 

mean absolute difference between measurement and prediction is 25% 
of MCR for vessel 1 and 22% for vessel 2. However, the differences can 
be as large as 62% for vessel 1 and 56% for vessel 2. Since predicted 
main engine power is a critical variable in the emission algorithms, any 
discrepancy between measured and predicted power is an input error 
that will propagate through the emission calculation. 

3.2. The impact of AIS speed post-processing method on predicted 
emissions 

Seventy-five goodness-of-fit plots were created for three vessels 
(vessel 1, 2 and fleet), five pollutants, five AIS postprocessing methods 
and two levels of aggregation for Method 3. They are presented in the 
Supplementary Information (SM1). Table 3 shows model performance at 
fleet level. A complex picture emerges. It is not possible, based on the 
available evidence, to declare a superior AIS speed post-processing 
method because the goodness-of-fit depends on the pollutant and the 
performance statistic. However, the differences in performance of the 
three post-processing methods are marginal, which implies that the 
choice for a particular method will not have a significant impact in terms 
of model performance. Therefore, the UTM method will be used in the 
analysis presented in the remainder of this paper. 

Fig. 3. The range of estimated vessel speeds using different AIS post-processing methods in cumulative minute time steps, vertical dotted blue lines demark the three 
different measurement periods for each ship. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 4. Measured on-board power and the range of estimated main engine power using different AIS post-processing methods in cumulative minute time steps, 
vertical dotted blue lines demark the three different measurement periods for each ship. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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3.3. Assessment of model performance (Method 1) 

In this section emission model performance is assessed for fuel-based 
emission factors using CO2 emission as a proxy for fuel consumption. As 
a first step observed and predicted emission factors (g/min) for each 
segment (approximately 1 km of vessel movement) were normalised for 
CO2 (g/min) and expressed as a pollutant-to-CO2 emission ratio. The 
normalised predicted and observed emissions data were then averaged 
for each power bin and compared. Fig. 5 (next page) compares the mean 
observed and predicted emission ratios for all pollutants and twenty-one 
engine power bins, where power is expressed as % MCR (0–100% in 5% 
increments). The 95% confidence intervals are included for measured 
emission factors, as well as the range of predictions in each power bin, 
whenever data are available. Table 4 presents an overview of model 
performance statistics. 

The emission model uses fuel-based emission factors for main en-
gines that are constant across a range of power settings, except for low 
power conditions <20% MCR (for instance during manoeuvring) where 
emission factors for NOx, PM10 and CO increase. This is visible in Fig. 5 

Table 3 
Performance statistics for 1 km vessel movements at fleet level.  

Pollutant Speed Processing 
Method 

r R2 MAE (kg/ 
kma) 

MPE NRMSE 

CO2 UTM − 0.08 0.01 84.77 − 40% 39% 
SCL − 0.08 0.01 87.98 − 40% 43% 
SCS − 0.07 0.01 86.44 − 39% 43% 

NOx UTM − 0.13 0.02 1.19 − 6% 33% 
SCL − 0.17 0.03 1.17 − 4% 32% 
SCS − 0.15 0.02 1.17 − 4% 32% 

SO2 UTM − 0.26 0.07 0.89 − 18% 35% 
SCL − 0.36 0.13 0.91 − 15% 35% 
SCS − 0.33 0.11 0.90 − 15% 35% 

PM10 UTM − 0.29 0.09 0.13 − 30% 17% 
SCL − 0.31 0.09 0.14 − 30% 17% 
SCS − 0.30 0.09 0.13 − 29% 17% 

CO UTM − 0.46 0.21 0.24 − 65% 18% 
SCL − 0.47 0.22 0.24 − 65% 18% 
SCS − 0.45 0.21 0.24 − 65% 18%  

a For PM10 the unit is g/km. 

Fig. 5. Measured and predicted emission ratios for four air pollutants, two levels of aggregation and twenty power bins, including the 95% confidence intervals for 
measured emission factors and the range (min-max) for predicted emission factors. Open dots represent bins with only one value. 
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with flat emission ratios above 20% MCR and increasing ratios below 
20% MCR. The measurements for Vessel 1 show a similar emission 
profile (with some expected variability), but without a clear upward or 
downward trend. For Vessel 2, the measured profile is different with a 
downward trend in emission ratios with increasing engine power for all 
pollutants, although the uncertainty for specific power bins can be large 
as shown by the extent of the confidence intervals of the mean. 

The modelled emission ratios for Vessel 1 show good agreement for 
SO2 and a reasonable agreement for PM10 and CO, with mean prediction 
errors within 10% and 40%, respectively. For NOx, emission ratios used 
in the model overestimate observed ratios with a factor of about two. 
The modelled emission ratios for Vessel 2 show good agreement for 
PM10 and a moderate agreement for SO2 and CO, with mean prediction 
errors within about 10% and 50%, respectively. For NOx, emission ratios 
used in the model overestimate observed ratios with about 70%. At fleet 
level, model performance tends to present the average performance for 
the two vessels, resulting in good overall performance for SO2 and PM10, 
moderate performance for CO and poor performance for NOx (bias: 
significant overestimation). 

The SO2/CO2 ratio from on-board measurements observed for Vessel 
2 presented in Fig. 5 varied significantly compared to that from Vessel 1. 
This ratio would be expected to be theoretically constant throughout 
engine load conditions. However, in the real world, the proportion of 
fuel sulphur and fuel carbon contributes to particular matter emissions, 
resulting in variability in their conversion rate to the gas phase. 
Therefore, while SO2/CO2 ratio may be constant during some on-board 
measurements it is not surprising that it may vary with others, 
depending on the ship operating conditions. The variation in SO2/CO2 
ratio can also be found in previous studies (Bai et al., 2020; Yang et al., 
2022). 

3.4. Assessment of model performance (Method 2) 

In this section emission model performance is assessed after nor-
malising for engine power. Fig. 6 (next page) compares mean observed 
and predicted emission factors, expressed as (k)g/min, for all pollutants 
and twenty-one engine power bins, where power is expressed as % MCR 
(0–100% in 5% increments). The 95% confidence intervals are included 
for measured emission factors, as well as the range of predictions in each 
power bin, whenever data are available. Table 5 presents an overview of 
model performance statistics. 

The prediction performance for CO2, NOx, SO2 and PM10 is good for 
Vessel 1 with a high level of correlation and a mean prediction error 
within ±40%. In addition, predictions often fall within the 95% confi-
dence intervals of the measured values suggesting that predictions are 
made within the uncertainty of the measurements. The results for CO 
suggest a significant underestimation with a mean prediction error of 
about − 60%. For Vessel 2, performance for CO2, NOx, SO2 and PM10 is 
also good with a high level of correlation and a mean prediction error 
within ±40%. For PM10 the mean prediction error is very good (±10%), 

but correlation is poor, which is caused by a flat relationship between 
power and observed PM emission factors. The results for CO again 
suggest a significant underestimation with a mean prediction error of 
about − 60%. At fleet level (combining data for both vessels), r and R2 

prediction performance is generally reduced, but prediction errors can 
improve in some cases (CO2, SO2). 

In conclusion, the observed emission factors follow the general di-
rection of the modelled emission factors: an increase in emission rates 
with increasing engine power. In a few cases (Vessel 2, PM and CO), the 
observed emission factors are (more or less) constant, which reduces the 
level of agreement with emission factors used in the model. Prediction 
performance varies substantially with pollutant and vessel. Performance 
can be good with good correlation and small prediction errors (for 
instance CO2 for Vessel 1 and 2) or poor with large discrepancies (for 
instance CO for Vessel 1 and 2). Nevertheless, the observed and 
modelled emission factors generally fall within a similar range of values. 

3.5. Assessment of model performance (Method 3) 

In this section emission model performance is assessed for the entire 
emission prediction process, namely AIS processing, prediction of fuel 
consumption and applying fuel-based emission factors. The goodness-of- 
fit plots are shown for all vessels and pollutants in Fig. 7 using the UTM 
method. Observed and predicted emission factors are compared for 1 km 
segments and the longer measurement period. In addition, the 1 km 
segment results for vessels 1 and 2 are combined (fleet) to assess overall 
prediction performance. 

The information presented in Table 3 (Section 3.2) and Fig. 7 provide 
the following insights. For 1 km emission factors the correlation between 
predictions and observations is negative, which means that generally 
observations increase when predictions decrease, and vice versa. With a 
negative correlation coefficient, consideration of R2 is not useful. It 
implies that predictions applied at 1 km grid level may generate issues 
when relative changes in ship emissions are modelled. However, this 
counter intuitive and unfavourable outcome regarding the direction of 
the predictions is the result of spatial and temporal inaccuracies in 
linking AIS data to the on-board measurements. It is unlikely to be an 
issue with the prediction algorithms, as was shown in the previous 
sections with reasonable to good agreement in terms of predicted and 
observed emission factors. 

It was clear in Fig. 4 that the correspondence between recorded main 
engine power (kW) during the test program and predicted main engine 
power using AIS data in combination with the ship emissions model was 
reasonable for some measurement periods but poor for others, which 
shows that there is an issue with matching AIS data with on-board 
measurements in some periods. 

It is noted that proper alignment of AIS and on-board test data was 
thoroughly investigated and checked during this study. Time stamps of 
the on-board testing program were verified by going back to the raw 
measurement data. However, matching of AIS and emission test data 
could not be improved for some measurement periods. 

In the absence of other independent data sets, it is unclear if these 
discrepancies are caused by time stamp issues in on-board measure-
ments or positional or other issues (e.g. shifts) in the AIS data. We 
suggest this is a further avenue for research as accurate input data are 
critical for global, regional and local ship emission inventories. We point 
out that accuracy issues with speed and positional AIS data, even after 
throrough verification and post-processing, is not beyond the realm of 
possibilities. For instance, refer to Emmens et al. (2021) who provide a 
detailed examination of the strengths and weaknesses of AIS data. They 
stated that the process of AIS data cleaning is ‘rather difficult’. 

In contrast to direction, the magnitude of the errors appears 
reasonable, particularly for NOx and SO2 where the MPE lies within 
approximately ±5% and ±15%, respectively. For PM10 and CO2 the 
prediction error is higher and MPE lies within approximately ±30% and 
±40%, respectively. The prediction error for CO is large, where 

Table 4 
Performance statistics for emission ratios by vessel.  

Pollutant Vessel r R2 MAE (kg/mina) MPE NRMSE 

NOx Vessel 1 0.00 0.00 17.52 117% 347% 
Vessel 2 0.80 0.65 12.89 69% 54% 
Fleet 0.83 0.69 12.62 71% 55% 

SO2 Vessel 1 0.32 0.15 1.51 10% 96% 
Vessel 2 − 0.05 0.01 5.77 53% 44% 
Fleet − 0.07 0.01 4.05 34% 36% 

PM10 Vessel 1 0.76 0.58 0.84 39% 78% 
Vessel 2 0.77 0.59 1.17 8% 20% 
Fleet 0.80 0.64 0.85 16% 16% 

CO Vessel 1 0.88 0.77 1.67 − 39% 28% 
Vessel 2 0.79 0.62 2.14 − 52% 31% 
Fleet 0.87 0.77 1.85 − 59% 26%  

a For PM10 the unit is g/min. 
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observations suggest a significant and consistent underestimation (bias) 
in predicted values. Whereas predicted CO emission factors vary be-
tween 0.003 and 0.15 kg/km, observed values are ranging from 0.04 to 
2.26 kg/km, which is in line with issue with the emission factors dis-
cussed in Section 3.3 and 3.4. Fig. 5 shows that spatial aggregation 
improves model performance. This can be seen when the average 
emission factors for the three measurement periods are considered for 

vessel 1 and 2 (large black open dots). The positions of theses dots move 
closer to the 45◦ line, which presents a perfect fit between observations 
and predictions. 

Table 6 presents the performance statistics for aggregated vessel 
movements. It includes the calculated overall model performance when 
the grand mean is compared for both observations and predictions. The 
result is shown in Table 6 (Vessel = Fleet), as well as the Fleet plots in 

Fig. 6. Measured and predicted emission factors for five pollutants, two levels of aggregation and twenty power bins, including the 95% confidence intervals for 
measured emission factors and the range (min-max) for predicted emission factors. Open dots represent bins with only one value. 
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Fig. 7 (solid black dot). 
Spatial aggregation significantly improves model performance. The 

correlation coefficient becomes positive and can be strong in some cases 
(for instance NOx Vessel 1). This is relevant for ship emission inventories 
as spatial aggregation will increase the robustness of the emission 
modelling results. It also confirms that the ship emissions model should 
be applied at the lower spatial and temporal resolution for which it is 
designed, as was discussed in Section 2.6. 

The magnitude of prediction errors (MAE) is significantly reduced for 
all substances at fleet level when compared with 1 km segments 
(Table 3), except for CO with the same error. 

3.6. The impact of current data on predicted emissions 

Current information was available only for a portion of the on-board 
testing data. The results are included in the goodness-of-fit plots in the 
Supplementary Information (SM2). There is a negligible difference for 
Vessel 1, as was already discussed in Section 3.1. For Vessel 2, there are 
some differences between model predictions with and without local 
current information. The impact on model performance is summarised 
in Table 7. 

Improved model performance through inclusion of local current in-
formation is indicated in bold font. Depending on the pollutant and 
performance statistic, prediction results may improve or may deterio-
rate. In terms of prediction errors (MAE, MPE, NRMSE) results improve 
when current information is included in the calculation for all sub-
stances, except PM10. In terms of correlation I, performance deteriorates 
further with inclusion of current for all substances, except CO. In all 
cases, changes in model performance are marginal, which suggests the 
extra effort of accounting for local currents in ship emission inventories 
may not be cost-effective. However, we note that this would obviously 
depend on the actual location. The currents experienced by vessels in 
this study were not particularly strong (with a maximum of approxi-
mately 1 knots). In areas where vessels experience strong currents, it is 
expected that currents will have a significant impact on fuel consump-
tion and emissions. 

3.7. Further guidance for on-board emission testing on ships 

The discrepancy between AIS data and on-board emissions testing for 
some measurement periods found in this paper highlights the need for 
internationally agreed guidance regarding on-board ship emission 
measurements. Based on the findings of this study the following rec-
ommendations are made:  

• Measurement of date/time stamped location and ideally speed 
should be made and recorded simultaneously to emission 

measurements using GPS equipment, and time aligned with engine 
emission and engine parameters.  

• GPS measurements should be made independently of the AIS 
equipment. A difficulty arises because the emission and engine 
measurements will be made in the ship engine room or adjacent to 
the exhaust stack, which will be isolated from satellite reception 
inside the ship structure. The GPS will need to be located above the 
ship superstructure and logged there or connected (probably by 
cable) to the emission and engine logging system.  

• The sampling frequency should be at least as fast as the sampling 
frequency of the emission measurements or AIS (whichever is faster).  

• A spatial resolution of at least 10 m should be used. 

Given the common use of AIS data in ship emission inventories, it 
would be of interest to examine the level of agreement between AIS data 
and GPS data collected on-board in future studies. 

4. Conclusions 

This study has used on-board emission testing data for two ocean- 
going vessels to assess the performance of an Australian ship emis-
sions model, and to assess the impact of local currents. Since the on- 
board testing program did not collect geographic location or vessel 
speed and course, ship movement information was independently ob-
tained using post-processed and verified Automatic Identification Sys-
tem (AIS) data. Time-series (location, speed/course over ground) were 
created using different computation methods (spatial interpolation, 
imputation of spot speeds). In addition, local sea current data were used 
to compute corrected speeds (speed over water). The six different time- 
series of speed were then used as input to the ship emissions model to 
predict fuel use, emissions and main engine power. This information was 
combined with the on-board emission testing results to create a per-
formance assessment database (1 min time resolution). 

It was found that the choice of AIS post-processing method can have 
a significant effect on predicted vessel speeds up to a maximum of about 
2 knots, but that, on average, differences are small in the order of 5%. 
The impact of local currents on main engine power was found to be 
negligible for one vessel, but potentially significant at specific points in 
time for the second vessel, varying between ±10% MCR. The corre-
spondence between recorded and estimated main engine power (kW) 
was good for some measurement periods but poor for others, which 
suggests that there are potentially unresolved issues with matching AIS 
data with on-board emissions tetsing. In the absence of other indepen-
dent data sets, it is unclear if these discrepancies are caused by time 
stamp issues in on-board measurements or positional issues (shifts) in 
the AIS data and further research is recommended. We also suggest the 
development of internationally agreed guidelines for on-board emis-
sions testing and make some recommendations regarding the spatial- 
temporal aspects of emissions data collection. 

It was found that AIS post-processing method did only marginally 
affect prediction performance and that none of the methods stood out as 
being the best approach. Similarly, only a marginal improvement was 
observed after inclusion of current impacts in emission modelling. This 
suggests the extra effort of accounting for local currents in ship emission 
inventories may not be cost-effective. However, the currents experi-
enced by vessels in this study were not particularly strong. In areas 
where vessels experience strong currents, it is expected that currents will 
have a significant impact on fuel consumption and emissions. 

Model performance was assessed for three different aspects, fuel- 
based emission factors (g/g CO2), engine work-based emission factors 
(g/kWh) and distance-based emission factors (g/km). In terms of fleet 
level results:  

1. Analysis of fuel-based emission factors suggest that predicted values 
for NOx are biased high with a significant overestimation of about 
70% on average. In contrast, predicted values for CO are biased low 

Table 5 
Performance statistics for power normalised emission factors by vessel.  

Pollutant Vessel r R2 MAE (kg/mina) MPE NRMSE 

CO2 Vessel 1 0.99 0.97 5.66 − 25% 13% 
Vessel 2 1.00 0.99 5.68 − 20% 10% 
Fleet 0.88 0.77 10.07 − 10% 19% 

NOx Vessel 1 0.94 0.88 0.28 39% 41% 
Vessel 2 0.90 0.80 0.50 37% 84% 
Fleet 0.70 0.48 0.55 57% 90% 

SO2 Vessel 1 0.97 0.95 0.12 − 18% 18% 
Vessel 2 0.95 0.90 0.26 29% 63% 
Fleet 0.88 0.78 0.23 22% 44% 

PM10 Vessel 1 0.88 0.77 0.02 − 2% 28% 
Vessel 2 − 0.74 0.55 0.05 − 8% 136% 
Fleet − 0.44 0.20 0.05 14% 90% 

CO Vessel 1 0.32 0.10 0.04 − 58% 47% 
Vessel 2 − 0.72 0.51 0.07 − 58% 104% 
Fleet − 0.53 0.28 0.06 − 59% 108%  

a For PM10 the unit is g/min. 
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with a significant underestimation of about 60% on average. The 
level of agreement between observed and predicted fuel-based 
emission factors is reasonable to good for PM10 and SO2. The rela-
tionship with engine power is replicated well for one vessel but not 
the other one. However, we acknowledge the small sample size of 
this study and recommend on-board testing on more vessels and 

pooling emissions data from previous studies would be required to 
confirm the general shape of the relationship with engine power.  

2. Analysis of work-based emission factors generally shows improved 
performance, which suggest that errors in fuel use estimation and 
fuel-based emission factors tend to offset each other. The observed 
emission factors follow the general direction of the modelled 

Fig. 7. Goodness-of-fit plots showing measured versus predicted emission factors for two vessels, combined (fleet), five pollutants and two levels of aggregation 
(UTM post-processing method). 
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emission factors: an increase in emission rates with increasing engine 
power, with a few exceptions, showing natural variability between 
ships. Prediction performance for CO2 is good and within ±10%. 
Predicted values for NOx are biased high with a significant over-
estimation of about 60% on average. In contrast, predicted values for 
CO are biased low with a significant underestimation of about 60% 
on average. The level of agreement between observed and predicted 
fuel-based emission factors is good for PM10 and SO2 and within 
approximately ±15% and ±20%, respectively. The observed and 
modelled emission factors generally fall within a similar range of 
values.  

3. Analysis of distance-based emission factors generally showed the 
largest discrepancies between predicted and observed values. The 
results suggest that the main cause is related to spatial and temporal 
differences between on-board testing and AIS data. These differences 
can lead to artificial improvements in model performance. For 
instance, NOx predictions are very good with prediction errors within 
approximately ±5%. This is despite the significant bias observed in 
fuel-based and work-based emission factors. The assessment of 
model performance for distance-based emission factors therefore has 
limited meaning in this study. This can only change once better 
matching of AIS and emissions data are achieved, which we have 
been unable to do in this specific study despite substantial efforts. 
Given the importance of AIS data in emissions modelling, it is rec-
ommended that the spatial and temporal accuracy of AIS data is 
investigated and confirmed in future studies. Moreover, the dis-
crepancies found in this study between model predictions and on- 
board measurements highlight some limitations in application of 
generic fleet-based models. 
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Vessel 2 − 0.35 0.12 75.61 − 30% 78% 
Fleet – – 64.34 ¡44% – 

NOx Vessel 1 0.97 0.93 0.76 − 14% 67% 
Vessel 2 − 0.68 0.46 1.05 11% 91% 
Fleet – – 0.10 ¡4% – 

SO2 Vessel 1 0.70 0.48 1.01 − 44% 1010% 
Vessel 2 − 0.57 0.33 0.69 10% 76% 
Fleet – – 0.51 ¡27% – 

PM10 Vessel 1 0.88 0.77 0.06 − 32% 56% 
Vessel 2 − 0.72 0.52 0.11 − 27% 83% 
Fleet – – 0.08 ¡32% – 

CO Vessel 1 − 0.98 0.96 0.28 − 76% 136% 
Vessel 2 − 0.52 0.27 0.20 − 64% 92% 
Fleet – – 0.24 ¡77% –  

a For PM10 the unit is g/km. 

Table 7 
Performance statistics for Vessel 2 excluding/including local current informa-
tion (UTM post-processing method).  

Pollutant Vessel r R2 MAE (kg/kma) MPE NRMSE 

CO2 Excluded ¡0.50 0.25 100.10 − 49% 486% 
Included − 0.68 0.46 90.34 ¡45% 466% 

NOx Excluded ¡0.23 0.05 0.20 − 5% 55% 
Included − 0.39 0.15 0.15 2% 47% 

SO2 Excluded ¡0.52 0.27 0.27 − 13% 86% 
Included − 0.66 0.44 0.17 ¡7% 58% 

PM10 Excluded 0.02 0.00 0.02 6% 35% 
Included − 0.29 0.08 0.03 15% 58% 

CO Excluded − 0.37 0.13 0.05 − 36% 78% 
Included ¡0.13 0.02 0.04 ¡31% 72%  

a For PM10 the unit is g/km. 
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