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ABSTRACT

This paper reports on the development and performance of a new simulation tool for road vehicles. The PAP model
predicts second-by-second fuel consumption, air pollution (NOx) and greenhouse gas emissions (CO,) with a high
resolution in time and space. It uses engine power and the change in engine power as the main model variables to
simulate vehicle fuel consumption and emissions for all relevant vehicle classes including cars, SUVs, light—-commercial
vehicles, rigid trucks and articulated trucks. A total of 73 vehicle classes are modeled accounting for main vehicle type,
fuel type and technology level. The model uses data from a large verified Australian emissions database containing
around 2 500 modal emission tests (1 Hz) and about 12 500 individual bag measurements. The minimum input
requirements for the model are speed-time data (1 Hz) and vehicle types. This kind of information is typically available
from microscopic traffic simulation models, on—road measurements or expert judgment. The user of the model can
also specify the road gradient, the vehicle loading and the use of air conditioning. Default values are provided for each
of these where location—specific data are unavailable. The PAP model aims for an optimum balance between model
complexity and prediction accuracy. The performance results for the PAP model results are good with, for instance,
average R’ values of 0.65 and 0.93 for NOy and CO,/fuel consumption, respectively. This performance compares well
with that reported for other models with different complexity. The emission algorithms are shown to be robust with
respect to prediction errors. Aggregation of the 1 Hz prediction results in time/space (e.g. 100 m road segments) and
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across vehicle classes (e.g. passenger car, SUV, articulated truck, etc.) further improves prediction performance.
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1. Introduction

Road transport is a major source of air pollution and
greenhouse gas emissions around the world. Models are common-
ly used to estimate fuel consumption and air emissions for road
transport. This is because measurements are often not feasible,
from both a technical and cost perspective, due to the large
number of vehicles that operate on our roads and the many factors
that influence emission levels. Models are also required to make
projections into the future.

Similar to transport models, a hierarchy of vehicle emission
models can be distinguished based on the level of complexity and
types of application (Smit et al., 2010). These include “average—
speed” models (e.g. COPERT, MOBILE), where emission rates
(g/veh km) are a function of mean travelling speed, “traffic—
situation” models (e.g. HBEFA, ARTEMIS), where emission factors
(g/veh km) correspond to particular traffic situations (e.g. “stop—
and—go—driving”, “freeflow”) and “modal” models (e.g. PHEM,
CMEM, MOVES), where emission factors (g/s or g/driving mode)
correspond to specific engine or vehicle operating conditions.
Whereas average speed and traffic situation models are designed
to operate at the national or city network level, modal models are
designed for local assessments.

There are a number of developments that are expected to
lead to an increased use of modal models. Firstly, there is an
increasing focus on the reduction of population exposure to air
pollution and (health) risk. As a consequence, it will be important
to know exactly which parts of the population are exposed to

relatively high air pollution levels (e.g. near busy roads), what the
level of impact is, and when this occurs. This type of assessment
requires a fine spatial and temporal allocation of vehicle emissions
in study areas, which can be achieved with modal models.

Secondly, there is increasing interest around the world in the
effects of local traffic conditions on traffic emissions, fuel
consumption and exposure to air pollution. For instance, applica-
tion of adaptive traffic control measures is growing to improve
traffic flow (to alleviate congestion), improve reliability and reduce
accidents (Akcelik, 2006; Noland and Quddus, 2006). It is essential
to know if these measures adversely affect or improve air pollution
and greenhouse gas emissions. Sensitive models are therefore
needed to accurately predict the correct direction and magnitude
of these effects as this kind of measure typically generates
relatively small but still significant impacts.

Thirdly, substantial improvements are expected with respect
to the quantity, quality and level of detail (resolution) of traffic
data, which are essential inputs to vehicle emission models. For
instance, wide scale automated collection of real-time field data
on vehicle movement in time and space (using e.g. GPS, video
imaging technology) is now becoming a reality due to ongoing
developments in, and application of, intelligent sensor, communi-
cations and computing technology in vehicles and at the road side
(Hoose et al., 2008).

Finally, vehicle testing programs in which emissions are
measured at a high resolution in time (typically 1-10 Hz) are
increasingly common. This creates opportunities for the
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construction of large emission measurement databases (including
many different vehicles) that can then be used for development of
accurate modal models.

This paper reports on the development of a new modal model,
the PAP model, which is based on high resolution Australian test
data. The objectives of this research are to develop a model that is
comprehensive, accurate, reliable and robust, easy to use and
which interfaces readily with appropriate traffic models and
(emerging) traffic field data.

2. Modal Vehicle Emission Models

Modal models vary in level of complexity and demand for
input data. The most complex modal emission models (e.g. Barth
et al., 2000; Atjay et al., 2005) are deterministic and compute
instantaneous emission rates (g/s) as a function of various engine
variables (e.g. engine speed and load, injection timing, oil
temperature, air-to—fuel ratio). Algorithms can be included to
simulate the effects of emission—control technology such as
catalysts. These models require a substantial amount of detailed
input data, which may not always be available to model users at
traffic stream level, or too difficult or even impossible to obtain
(e.g. gear shift behavior in traffic streams). In order to address this
problem, part of the required input data may be simulated within
the software. Gear shift behavior, for instance, is usually simulated
to compute instantaneous engine load and engine speed. This,
however, introduces unknown errors to the model predictions,
which may offset accuracy gains from detailed modeling.

A particular issue is the number of test vehicles on which the
model is based, and the extent to which the model represents the
on—road vehicle fleet. With respect to the emission algorithms, it is
clear that accurate emission models need to be based on measure-
ments on a large number of vehicles in various driving conditions
to adequately capture and reflect the large variability in emissions
behavior of different vehicles (even among vehicles of the same
brand and model). Given the time required to develop complex
modal models, the number of vehicles and vehicle types included is
typically limited.

This raises the question if model complexity can be reduced
without compromising prediction accuracy. This would make a
model easier and less costly to use. A few validation studies
(Lacour et al., 2001; Smit et al., 2010) have shown that more
complex emission models do not necessarily lead to more accurate
predictions, which seems to support this notion.

Simplified modal models have been developed, ranging from a
relatively simple fundamental driving mode model (Midenet et al.,
2004), an instantaneous speed/acceleration model (Rakha et al.,
2004), to a power—based model (Sonntag and Gao, 2007). The PAP
model aims for an optimum balance between model complexity
and prediction accuracy. With respect to the last criterion, it is
noted that prediction errors depend on both accuracy of model
input and accuracy of model algorithms. The quality of traffic input
data (e.g. traffic volume, road length, speed—-time profile) is a
relevant issue with respect to prediction accuracy, and it has been
found that accurate input data are at least as important as
accurate emission algorithms (Smit, 2008).

3. PAP Model Approach

Previous investigations have shown that vehicle emission
models need to reflect local fleet composition and driving
characteristics to provide adequate vehicle emission predictions.
Large errors were found when overseas models were directly
applied to Australian conditions without calibration (e.g. Smit and
McBroom, 2009), because these models do not reflect Australian
vehicles, fuels, climate, fleet composition and driving conditions.
Indeed, this was the main reason for the development of a

dedicated Australian version of the COPERT software, known as
“COPERT Australia” (Smit and Ntziachristos, 2012).

The PAP model uses engine power (P, kW) and the change in
engine power (AP, kW) as the main model variables to simulate
vehicle fuel consumption and CO, and NOy emissions. The model
uses a similar vehicle classification as COPERT Australia, which is
based on the combination of fuel type (petrol, diesel), main vehicle
type and ADR category. ADRs refer to “Australian Design Rules”,
which are the emission standards adopted in Australia. ADRs have
been aligned with EU standards from about 2003 (before 2003 US
standards were used). A total of 73 vehicle classes are modeled.
The main vehicle types are defined as small passenger car (PC-S,
engine capacity <2 L), medium passenger car (PC-M, 2-3 L), large
passenger car (PC-L, >3 L), compact and large SUVs (SUV, 4WDs),
light—commercial vehicle (LCV, GVM<3.5 t), rigid medium commer-
cial vehicle (MCV, GVM 3.5-12.0 t), rigid heavy commercial vehicle
(HCV, GVM 12.0-25.0 t), articulated truck (AT, GVM>25 t), light bus
(BUS-L, GVM<8.5 t) and heavy bus (BUS-H, GVM<8.5 t). Eleven ADR
categories are included ranging from uncontrolled to ADR79/02
(Euro 4) and ADR80/02 (Euro IV).

The input to the model is speed-time data (1 Hz) and
information on road grade, vehicle loading and use of air
conditioning (on/off). This information is used to compute the
required (change in) engine power for each second of driving. The
vehicle emission algorithms were developed in three distinct steps:
e C(Creation of a verified empirical database for model

development.

e Development of mathematical relationships between empirical
emissions data and engine power.

e Development of the PAP simulation tool for on—road driving
conditions.

These steps are discussed in the following sections.
4. Empirical Data

A large number of vehicle emissions tests are available from
various Australian test programs. These emissions data have been
collated in a verified emissions database with about 2 500 modal
emission tests (1 Hz) and about 12 500 individual bag measure-
ments. The modal data files contain typically around 30 minutes of
laboratory—grade second—by-second emissions and speed data
based on real-world driving cycles that were developed from on—
road driving pattern data in Australian cities. The real-world
driving cycles were developed for four distinct traffic situations—
congested (Con), residential (Res), arterial (Art) and freeway (Fwy)—
and five main vehicle classes—light—duty vehicles (LDVs), medium
commercial vehicles (MCVs), heavy commercial vehicles (HCVs),
articulated trucks (ATs) and buses (BUSs)-to reflect the different
speed—acceleration characteristics due to different power—to—
mass ratios. The cycles are shown in Figure 1.

In addition to the real-world cycles, modal data from the
DT80 test cycle have been used. The DT80 test is an Australian in—
service emissions test that is conducted to assess emissions
performance of on—road diesel vehicles. The test simulates worst—
case driving conditions (e.g. full open throttle acceleration, high
cruise speeds) in order to capture worst—case emission levels. This
is useful as it ensures that emissions data are available over the full
range of operating conditions, including extreme accelerations.

All modal emissions test data were subjected to a verification
and correction protocol (Smit and Ntziachristos, 2012). This
included time re-alignment, verification of emission traces
(analyzer drift, clipping) and computation and verification of test
statistics (e.g. BSFC, mean thermal efficiency).
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Figure 1. Australian real-world driving cycles by traffic situation and main vehicle type.

For each of the vehicle classes, one representative vehicle was ( ) . (t ¢ ) t=1
selected for model development taking into consideration mean V, =V )L, L -
fuel consumption and emission levels as compared to the class
average values. The empirical data files contained emissions and a = (VHl —VH) +(tt+1 —tH) 2<t<n-1 (1)
speed-time data for the real-world driving cycle and, when
available, the DT80 driving cycle. These files were then split into (V -V 1)+(t —t 1) t=n

n n-. n n—.

two data files, one for model development (“Con”, “Res”, “Fwy”,
“DT80”) and one for model validation (“Art”).

5. Model Development

The first step was to develop a mathematical relationship
between engine power and emission measurements during the
tests. All measured second—by—second (1 Hz) speed-time data
were smoothed and all speeds less than 0.5 km/h were set to zero.
On-road speed measurements and recorded driving patterns are
discrete in time and value due to measurement methods or
numerical imprecision. Pre—processing of discrete speed-time data
(smoothing) was required to account for noise in the speed-time
data and to prevent significant errors in the calculation of the
computed time-series of acceleration and engine power, in
particular at higher speeds where unsmoothed speeds can lead to
large differences in predicted engine power. Smoothed speed—
time profiles were created using a T4253H (running median and
Hanning filter) smoothing algorithm (Velleman, 1980), which is
recommended for driving cycle analysis and development (UNECE,
2008). The effect of smoothing on average driving cycle power is
generally small with a maximum of a few percent. However, the
effects can be substantial in specific parts of the test cycle where
extreme peaks in power are removed. The smoothed profiles were
used to compute and add time-series of acceleration, engine
power and normalized engine power to the modal test files.
Acceleration (ay, m/sz) is computed as:

where v; represents instantaneous (smoothed) vehicle speed (m/s)
at time t, which varies from the cycle start time t=1 to the cycle
end time t=n. In order to compute engine power, dynamometer
power (P;, kW) was computed for each modal test using the
dynamometer load algorithms, which varied with the different test
programs. For instance, one of the test programs used the
dynamometer algorithms for petrol LDVs as specified in ADR79/01
(Euro 2):

Pt*=(a+ﬂvf+lwat)vt (2)

where « and f represent power absorption coefficients [N and
N/(km/h)?, respectively] and M is the vehicle test mass (kg). Typical
values for passenger cars, SUVs and LCVs are 7.10, 10.53, 11.44 N
fora, 0.04810, 0.07241, 0.07865 N/(km/h)2 for fand 1360, 1810
and 2 150 kg for test mass, respectively. Other test programs used
proprietary dynamometer loading algorithms where P, is a
function of v, a;, M, as well as aerodynamic drag coefficient and
frontal area. Engine power (P;, kW) was computed for each second
of driving using these study—specific dynamometer algorithms in
combination with additional algorithms to simulate internal vehicle
losses due to drive train and tire rolling resistances that are not
accounted for in the dynamometer algorithms (Rexeis et al., 2005).
The vehicle emission rate (e;, g/s) was then fitted to the following
equation:
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a vt=0
e = ) ) (3)
Byt B+, AR+ B R+ B AR + B RAR +& v, >0

For idling conditions (=0 km/h) a constant average value
(g/s) is used. For non-stationary (moving vehicle) driving
conditions a multivariate regression function has been fitted using
the ordinary least-squares method, where £, ..., fs represent the
regression coefficients. Residual analysis (Neter et al., 1996) was
used to verify that the assumptions of the regression analysis were
not violated. The variable AP, quantifies the change in power over
the last three seconds of driving and is computed as:

AP =P —P (4)

AP, aims to include “history effects” into the model. This is
important because vehicle operating history can play a significant
role in an instantaneous emissions value, for instance due to the
use of a timer to delay command enrichment or oxygen storage in
the catalytic converter (e.g. Barth et al., 2000), but also due to
inertia effects that span over several seconds of driving. Table 1
shows an example of model and vehicle parameters that are used
in the emissions simulation. Note that some parameters in Table 1
will be discussed later in this paper.

6. Model Performance

This section discusses both model verification and model
validation. Model verification assesses how well a model predicts
the data on which it is based, whereas model validation assesses
how well a model predicts with respect to independent data. The
empirical data were split to enable both assessments.

6.1. Model verification

The PAP model generally predicts fuel consumption rates and
CO, emission rates (g/s) quite well with a coefficient of determina-
tion (RZ) ranging between 0.80-0.98, and an average value of 0.93.
This means that approximately 80% to 98% of the variation in
instantaneous emissions can be explained with the algorithms. For
NOy the results are more variable with R* values varying from
0.17-0.90, and an average value of 0.65. Figure 2 shows four
goodness—of—fit plots with the best and worst models with respect
to R® for each pollutant, where each dot points represents one
second of data of the test cycles.

Root—Mean—Square—Error (RMSE) is a frequently used
measure of the differences between predictions and observations.
It aggregates the second—by—second errors into a single measure
of predictive power. Normalized RMSE is used to make RMSE
scale—independent and it is computed by dividing RMSE by the
range of observed values. Normalized NRMSE varies from 2-12%
for fuel consumption predictions and 3-21% for NOy emissions
predictions.

It is instructive to show time—series plots of predicted and
observed emissions and the speed-time profile used during
emissions testing. Figure 3 shows an example for an ADR79/01
(Euro 4) diesel passenger car. The black line represents the
observations and the red dot points predictions. The model for this
vehicle class predicts fuel rates (and hence CO, emissions) well
with an R® of 0.94 and a root—-mean-squared error (RMSE) of
0.26 g/s. This is also the case for the emission peaks, which are
important to assess local effects of changes in driving behavior
(e.g. due to changes in signal settings at an intersection). Note that
the extreme DT80 test is included (t=1417-1668 seconds),
showing the highest fuel rates in the combined test.

Table 1. Model and vehicle parameters for an ADR80/00 (Euro Ill) heavy diesel bus (BUS—H-Diesel)

Parameter Value Unit
Vehicle Parameters

Make Volvo

Model B12B

Type Bus

A —Frontal area 6.5 m’

Cd — Aerodynamic drag coefficient 0.62

Ro—Rs — Rolling resistance coefficients 0.000000-0.00715

Tare mass 14 500 kg

GVM 23 500 kg

Rated engine power 313 kW

Engine capacity 12.0 L

a 0.94 g/s
Model Parameters

Lo 2.14 g/s

yin 0.04045 g/s kw

Yo 0.00077 g/s kw

Bs 0.00006 g/s/kW?

B 0.00002 g/s/kW’

Bs 0.00006 g/s/kw?

7] 1.001

E max.obs 18.41 g/s

1.05
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Figure 3 also shows the ADR79/01 (Euro 3) petrol SUV again,
the worst performing model for NOy. The model for this vehicle
class predicts NOy emissions poorly with an R? of 0.17 and a root—
mean—squared error (RMSE) of 0.004 g/s. It is interesting to note
that the model is unable to reproduce the emission peaks, which
means that they are not related to power and the change in
power. Given the low emission rates for this vehicle, it is likely that
the peaks are caused by small deviations in the air—to—fuel ratio,
which affect catalyst efficiency, but which will not be reflected in
the P and AP values. This effect becomes more important and
more pronounced when modern vehicles with low NOy emissions
are compared with older technology vehicles with higher base NOy
emission levels. This is clear from Figure 2 where a 1995 petrol car
with an average emission rate of 9.41 mg/s shows a substantially
better model fit then a 2006 petrol SUV with an average emission
rate of 0.17 mg/s. This result exposes a limitation in power based
modeling at a high resolution for some modern petrol vehicles.
This problem has also been reported by other researchers around
the world, as will be discussed in Section 7. De Haan and Keller
(2000), for instance, reported difficulties with constructing a modal
emission model that could accurately simulate the irregular
emissions behavior of (at the time) modern cars.

There are however two aspects that will reduce prediction
errors. Firstly, emissions from individual vehicle classes are not of
particular interest in terms of model application. The amount of
travel (expressed as vehicle kilometers travelled or VKT) for each
vehicle class changes with time, as new vehicles enter the fleet and
old vehicles are progressively removed from the fleet. So the VKT—
weighted sum of emissions from all vehicles classes is needed to

assess the effects of road traffic on (local) air quality and
greenhouse gas emissions. As a consequence, overall model
performance tends towards an average of the performance of
individual vehicle classes.

Secondly, spatial/temporal aggregation of predictions will
reduce prediction errors. This is illustrated in Figure 4 for one
vehicle class for four different spatial resolutions, i.e. 100 m
segments, 500 m segments, 1000 m segments and the cycles
“Con”, “Res” and “Fwy”. It is clear that model performance
improves and prediction errors are reduced with decreasing spatial
resolution, although the smallest error is observed for 1000 m
segments.

Finally, with respect to model bias, the emissions profile over
the entire driving cycle (combination of “Con”, “Res”, “Fwy” and
“DT80”) is replicated well even though there is a difference in
model performance for the individual vehicle classes. For fuel
consumption and CO, emissions, total driving cycle emissions (g)
are within 1% of observed values, whereas for NOy these are
within £3%.

6.2. Model validation

The emission algorithms were used to predict fuel
consumption and emissions for the validation dataset, i.e. the
“Arterial” driving cycle, which was not used in model development.
A comparison between the model validation and model verification
results with respect to model performance is shown in Figure 5.
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With respect to prediction errors (RMSE) the validation and
verification show quite similar results for both fuel consump-
tion/CO, and NOy. This demonstrates that the emission algorithms
are robust with respect to prediction performance. The same
applies for R? for fuel consumption and CO,, but the results are
more variable for NOy.

Interestingly, the more stringent model validation step
exhibits improved model performance in several cases. Figure 6
shows this effect for one vehicle class, i.e. Large ADR79/01 (Euro 3)
Petrol Passenger Car, where the R* values are 0.31 and 0.59 for
verification and validation, respectively, and the RMSE values are
similar (0.010 g/s for both).

Figure 7 shows the results with respect to model prediction
bias. As compared with the verification step, there is a significant
increase in systematic prediction errors, with typical values of +5%
for fuel consumption and CO, emissions and of +50% for NOy
emissions. It is, however, clear that large bias only occurs for
vehicle classes with relatively low emission levels. On arterial roads
there appears to be a tendency for under—prediction of fuel
consumption and CO, emissions, with an average value of
approximately —5%. The average bias for NOy emissions is small at
—1%, despite the large bias for some vehicle classes. This means

7. Development of the Simulation Tool

The emission algorithms discussed in Section 5 predict
second—by—-second fuel consumption and emissions. However, a
few more steps are required to create the PAP simulation tool:

e (Calibration to average vehicle class emissions.

e Simulation algorithms for on—road engine power.

e Setting model prediction boundaries (100 m minimum
distance, cap maximum prediction/extrapolation).

7.1. Calibration to vehicle class averaged emissions

It is important that total driving cycle emissions for the
vehicles used in model development match those of the average
values of similar vehicles in the empirical database. A calibration
factor @ is therefore introduced and computed as the ratio of total
cycle emissions (g) for the vehicles used in model development to
average total cycle emissions of all tested vehicles of a particular
vehicle class, in the same test conditions*(drive cycle, etc.). Vehicle
emission rates in the simulation tool (e; , g/s) are then computed
as:

. L = 5
that at the fleet level large systematic prediction errors tend to et % et (3)
cancel each other out.
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Figure 6. NOy time—series plots for large petrol car, MY 2006, ADR79—-01 (Euro 3), top chart: speed —time profile, bottom chart:
second—-by—second predictions (red dots) and observations (black line).
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Typical values for ¢ are 0.9-1.2 for fuel consumption and CO,
emissions, and 0.6—1.7 for NOy emissions.

7.2. On-road power algorithms

For the simulation tool, an estimate of second—by—second on—
road engine power demand is required, which reflects the impacts
of vehicle loading, road grade and use of auxiliaries. The on-road
engine power prediction model consists of a set of algorithms that
quantify the resistive forces that are exerted on the vehicle while
driving. A motor vehicle requires engine power to overcome all
these resistive forces and to run its accessories (e.g. air condition-
ing). For the PAP model, power algorithms have been adopted
from Rexeis et al. (2005). The total second-by-second engine
power (P;, kW) that is required to propel a vehicle along a road, can
be broken down into six power components:

P=P 4P +P 4P 4P 4P (6)

t rolres,t air ,t inert ,t grade,t transm,t aux,t

where P, is the power required to overcome tire rolling
resistance (kW), P, is the power required to overcome
aerodynamic resistance (kW), P;,.: is power required to overcome
inertial resistance (kW), Pgqqe is the power required to overcome
gravitational resistance (kW), P:ansm IS pOower required to overcome
drive train resistance (kW) and P, is the power required to run
auxiliaries (kW). The power components are predicted for each
second of driving and require input on speed, acceleration, road
grade, vehicle mass (including loading) and use of air conditioning.
These algorithms also require vehicle specific information such as
aerodynamic drag coefficient, frontal area and rolling resistance
coefficients. This vehicle specific information was collected for all
vehicles used in this research project and hard coded into the
software.

7.3. Operational boundaries

Finally, a few operational boundaries are applied to the
emission simulation. Firstly, instantaneous P; and 4P, values cannot
exceed 110% of the minimum and maximum values encountered
during the tests. Secondly, emission rates are capped at a
maximum value which is dependent on the vehicle test
(Emax=Emax.obs X @). If the ratio of the maximum engine power in the
test to the rated engine power is less or equal to 50%, then the
maximum rate is set to 1.50 (¢=1.50) times the maximum observed
value E, o ops- If the ratio is between 50-75%, or larger than 75%,
then the maximum emission rate is set to 1.25 and 1.05 times the
maximum observed value, respectively. It is noted that ¢values are
set arbitrarily, but are expected to be reasonable.

The simulation will also check for the occurrence of
unrealistically high engine power during the simulation. This could
occur, for instance, when a LDV driving cycle is used for an
articulated truck. In this case the truck cannot deliver the accele-
ration rates required to follow the speed—time input data and the
rated power of the truck will be exceeded. The simulation will not
report the results for these situations if rated engine power is
exceeded more than 5% of the time.

8. Example of Simulation Output

Figure 8 shows an example of simulation input and output for
three input driving cycles (“Congested”, “Arterial”, and “Freeway”).
It is noted that the result are aggregated to fourteen main vehicle
types using base year dependent travel-based weighting factors for
the various ADR categories. The emission factors (g/veh km) can
then be combined with data on traffic volume and road length to
compute total emissions for each main vehicle type in these three
traffic conditions.

9. Discussion

This paper discussed the development and performance of a
new high resolution emission simulation model based on
Australian test data. The approach has a few innovative aspects
such as the use of delta power in model predictions, calibration to
and connection with a larger emissions database, explicit
consideration of an appropriate spatial and temporal scale and a
comprehensive coverage of on—road vehicle classes. The objectives
of the research project were to develop a model that is
comprehensive, accurate, reliable and robust, easy to use and
which interfaces readily with appropriate traffic models and
(emerging) traffic field data.

9.1. Comprehensiveness

Vehicle emission models can be “incomplete” because they
predict emissions for specific vehicle categories only (e.g.
passenger cars) or because they are outdated (e.g. based on test
data that do not reflect the latest developments in vehicle
technology), effectively restricting predictions to a specific part of
the on-road fleet. The PAP Model is comprehensive because it
includes all relevant vehicle classes and it is based on a large
empirical database that includes recent technology vehicles. The
current model includes ADR categories up to ADR79/02 (Euro 4)
and ADR80/02 (Euro IV). Newer and future standards can be
readily incorporated by using technology specific scaling factors
(Ntziachristos and Samaras, 2001) and development of additional
algorithms once new emissions data become available.

9.2. Accuracy

The performance results for the PAP model results are
generally good compared to other models. For instance, Silva et al.
(2006) compared three high resolution emission models to on—
board test data and concluded that R* values for CO, HC and NOy
were “typically less than 0.40”, whereas fuel consumption was
slightly less than 0.75. These three models were developed in the
USA and Europe and have a more complex structure (and hence
larger input data requirements) than the PAP model.

Ajtay et al. (2005) used brake mean effective pressure and
engine speed and showed that this led to more accurate models as
compared with a simplified speed—acceleration model, although
this depended on the vehicle technology. For instance, for a Euro 2
diesel car both the complex and simplified models produced
excellent results for NOyx with R® values of 0.99 and 1.00,
respectively. In contrast, for Euro 3 petrol cars, the results were
not good for both methods with R* values of 0.19 and 0.25,
respectively. This result is similar to the observed performance for
the Euro 3 petrol cars in this study (R2 values of 0.17-0.56).

9.3. Scope of application

The PAP model is designed for use in research studies or
projects where detailed information is available regarding vehicle
driving behavior and potentially other factors such as road grade
and vehicle loading, and where a high spatial and temporal
resolution in emissions and fuel consumption is required. It is
expected that the software can be used in most cases, but there
may be a few instances where use of the model is not suitable.
One consideration is that the PAP software does not explicitly
simulate engine load and engine speed. As a consequence, gear
shift behavior is implicitly included because predictions reflect the
gear shift behavior during the emissions tests. However, this level
of detail is not useful in the majority of applications due to a lack of
input data (e.g. information on actual in—traffic gear shift behavior
is scarcely — if ever — available). Nevertheless there are situations
where the effects of gear shift behavior are of particular interest,
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Figure 8. Example of PAP model simulation output (top left: part of input file, top right: time—series of speed and model predictions,
bottom: graphical summary output).

e.g. to examine the impacts of specific drive training programs
(e.g. eco-driving) on emissions and fuel consumption. In these
cases, the PAP software is of limited use and will only predict the
effects of changes in speeds, and not changes in gear shift
behavior. More detailed models such as PHEM (Zalinger et al.,
2008) and CMEM (Barth et al., 2000) should be employed in these
cases.

9.4. Reliability and robustness

The validation showed that the PAP emission algorithms are
robust with respect to prediction errors (RMSE/NRMSE) and
goodness—of—fit (R%) as they show similar results to the verification
step, and sometimes even exhibit improved performance. There is,
however, an increase in prediction bias, which can be reduced by
inclusion of the validation data in a second round of model fitting
to address the systematic under—prediction (about 5%) for fuel
consumption and CO, emissions in arterial conditions, and
aggregation of prediction results to fleet level to cancel out
systematic errors for NOy. Another way to reduce prediction errors
is to apply a spatial aggregation to the second—by—second emission
predictions. This means that predictions are made for a specific
length of road. A minimum length of 100 m will be used in the
model simulations.

9.5. Ease of use and interfacing with traffic data

The minimum input requirements for the emission simulation
are speed-time data (1 Hz), driving cycle or driving pattern name
of ID and a selection for which vehicle types the simulation should
be run. This kind of information should be available from

microscopic traffic simulation models (e.g. AIMSUN, VISSIM,
PARAMICS), expert judgment (e.g. modification of driving cycles) or
on—road measurements using e.g. GPS. Additional input on road
grade, vehicle loading and air—conditioning use are optional but
can be set to default values (road grade=zero, vehicle loading=50%
and air—conditioning use=off) in the absence of information.

Detailed spatial and temporal attribution of vehicle emissions
is of increased importance because of an increasing focus on the
reduction of population exposure to air pollution and (health) risk.
In addition, detailed simulation of the impacts of changes in driving
behavior on emissions through a variety of potential traffic
management measures is required to address the desire to reduce
greenhouse gas emissions and improve fuel efficiency. Integration
of PAP emission algorithms with e.g. microscopic traffic simulation
models will generate time and space resolved traffic emissions
information, which can be fed into air quality models that simulate
dispersion and chemical conversion processes to predict air
pollution concentration levels, exposure and health risks in urban
areas. This type of analysis can be used to accurately identify air
pollution “hot spots” or even greenhouse gas emission hot spots
and assess the impacts of specific measures in urban areas. This
way the PAP software will support decision making in urban
environments through scenario modeling, enhanced land use
planning, policy development and improved traffic management.

9.6. Representativeness and use in other countries than Australia
The PAP emission algorithms are representative for Australian

conditions as they reflect the Australian fleet, driving conditions
and driving behavior, as well as other relevant aspects such as
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Australian fuel quality and fuel composition. Although the model is
based on Australian data, it can in principle be used to generate
first order estimates of emissions and fuel consumption in other
countries. However, it is recommended that some calibration is
conducted to better reflect local conditions. As a minimum,
ADR/Euro emission standard equivalency tables and information
on the local fleet composition are required to link the seventy
three PAP vehicle classes to the corresponding vehicle classes in
the country of interest. If more accurate predictions are required,
aggregated local emissions data (e.g. total cycle emissions in grams
per km) can be used to calibrate the model using the variable ¢
(Section 7.1). A country specific version of the PAP software can
even be developed if more detailed local modal emissions data are
available.

10. Further Work

The model will be extended to include other air pollutant
emissions such as particulate matter (PM), hydrocarbons (THC) and
carbon monoxide (CO) and new and future vehicle technologies.
Research will be conducted to further improve model perform-
ance. Firstly, modal emissions data from more test vehicles will be
incorporated into the model in time. Secondly, the impact of other
AP definitions and other statistical approaches (e.g. time—series
models) will be examined. Application of the software in practical
applications will be useful to see how the model performs and how
it compares to other models.

Acknowledgment

The Australian Government and the SA Department of
Transport Energy and Infrastructure are acknowledged for
commissioning vehicle emission test programs that have
collectively provided the (unverified) empirical emissions data used
in this research. These include the following test programs: the
First and Second National In—Service Vehicle Emissions studies
(NISE1 and NISE2), the Diesel Vehicle Emissions National
Environment Protection Measure Preparatory Work (DNEPM) and
the South Australian Test and Repair Program (SATR).

Appendix
Abbreviations

ADR: Australian design rule

AT: Articulated trucks

BSFC: Brake specific fuel consumption

GVM: Gross vehicle mass

HCV: Heavy commercial vehicle (GVM 12.0-25.0 tonne, rigid truck)
HDV: Heavy—duty vehicle (rigid truck, articulated truck or bus)

LCV: Light—-commercial vehicle (GVM<3.5 tonne)

LDV: Light—duty vehicle (passenger car, SUV or LCV)

MCV: Medium commercial vehicle (GVM 3.5-12.0 tonne, rigid
truck)

P: Engine power

AP: Change in engine power

PC: Passenger car

SUV: Sport utility vehicle

VKT: Vehicle kilometers travelled
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