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Abstract  

Reliable motor vehicle emission predictions are needed and the magnitude 
of prediction errors needs to be understood to ensure sound policy 
decisions. This study reports on a comparison between measured in-tunnel 
fleet emissions (CO, NOx, PM2.5) and predictions made with COPERT 
Australia and PIARC. Measurements were taken from a 6.8 km tolled 
motorway tunnel that links several major roads in Brisbane, Australia.  
COPERT Australia generally performs significantly better than PIARC and 
has the added benefit of being capable of estimating emissions for a large 
range of pollutants. PIARC showed very good agreement for one situation 
(LDV NOx). The validation results are good, when compared to similar 
international research work. COPERT Australia emission factors for the 
Queensland fleet are conservative, and it is recommended that they are 
used for tunnel air quality assessments in the absence of tunnel emission 
measurements.  
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1. Introduction 

Motor vehicles are a major source of air pollution 
and greenhouse gas emissions in urban areas 
around the world. The close proximity of motor 
vehicles to the general population makes this a 
particularly relevant source from an exposure and 
health perspective. This is illustrated by Caiazzo et 
al. (2013) who estimated that total combustion 
emissions in the U.S. account for about 210,000 
premature deaths per year (particulates, ozone), 
with motor vehicles being the largest contributor, 
causing about 58,000 early deaths per year. 

2. Model validation  

There are several methods used to (partially) 
validate vehicle emission models, such as on-board 
emission measurements (PEMS), remote sensing, 
near-road air quality measurements and tunnel 
studies. Tunnel studies have been extensively used 
around the world to compare model predictions with 
observed values. In these studies, emission factors, 
expressed as grams of pollutant per vehicle 
kilometre (g/veh.km), are determined using the 
differences between the concentration levels at the 
tunnel entrance and exit, combined with tunnel 
features (e.g. road length), traffic flow and traffic 
conditions, as well as either measured tunnel air 
flow or a dilution factor based on a tracer gas (e.g. 
SF6). Regression analysis is often used to develop 

mean emission factors (g/veh.km) by time of day for 
basic vehicle classes (e.g. LDV, HDV).  
Tunnel validation studies have specific strengths 
and weaknesses. A strength is that emissions are 
derived from a large sample of the on-road fleet, 
thereby adequately capturing inter-vehicle 
variability in emissions, including ‘high emitters’. 
Moreover, measurements are carried out under 
relatively controlled conditions. For instance, the air 
dilution conditions are better known in tunnels than 
in open road experiments, and the influence of 
meteorological parameters such as wind speed and 
wind direction is usually negligible.  
Also, the spatial resolution aligns better with 
distance-based emission factors (g/km) commonly 
used in vehicle emission models, as compared with 
localised validation methods such as remote 
sensing and near-road air quality measurements. 
However, there are also some challenges with 
tunnel studies. They rely on indirect measurements 
rather than direct exhaust measurements, and this 
can introduce errors. They also represent only a 
limited range of operating conditions (typically 
‘smooth’, uncongested, high-speed driving). As a 
consequence, validation results cannot be directly 
translated to e.g. lower speed urban driving 
conditions. Tunnels may also have significant uphill 
and downhill gradients, affecting emissions. The so-
called ‘piston effect’, which occurs with one-way 
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traffic flow, and any forced ventilation in the 
direction of the traffic flow combine to produce an 
effective tail wind that reduces aerodynamic drag 
on the vehicles in the tunnel.  
Furthermore, assumptions relating to the unknown 
proportion of vehicles in cold-start mode and actual 
vehicle loads, etc. are required to make a 
comparison with model predictions. For particulate 
matter, an additional problem originates from the 
contribution of both exhaust and non-exhaust 
sources to total concentrations (due to tyre and 
brake wear and particle re-suspension, possibly 
even direct dust emissions from e.g. gravel trucks).  
Nevertheless, tunnel studies provide a useful 
approach to (partially) validate vehicle emission 
models for specific traffic situations (high speed 
free-flow drive conditions). 

3. Tunnel measurements 

Brisbane’s Clem Jones Tunnel (CLEM7) is one of 
the largest infrastructure projects completed in 
Queensland. It has 6.8 km of tollway and 4.8 km of 
twin 2-lane tunnels (or tubes) linking major 
Brisbane roads, with a cross-sectional area of 
about 60 m2. 
Air monitoring equipment was installed in the north 
tunnel ventilation stack on 25 August 2014. Air 
monitoring data (5 minute average) was collected 
by DSITI in the north tunnel ventilation stack for 
over a week for a number of key air pollutants (CO, 
NO, NO2, NOx, PM2.5, PM10, speciated VOCs and 
PAHs), as well as variables quantifying conditions 
in the tunnel vent (temperature, relative humidity, 
atmospheric pressure).  
The pollutant monitoring data was checked by pre- 
and post-test calibration, because daily calibration 
for zero and span values could not be carried out 
during the test period. Examination of five minute 
data was performed to check the quality and validity 
of the raw concentration measurements, before 
hourly averaged values were computed. 
Fleet-averaged (composite) emission factors (g/km) 
were computed using hourly measurements of 
time-aligned and background-corrected concen-
trations, tunnel air flow and estimation of hourly 
travel in the tunnel, which is quantified with a 
variable called ‘vehicle kilometres travelled’ (VKT). 
Hourly VKT was computed by multiplication of total 
traffic volume (veh/h) derived from classified traffic 
counts and tolling statistics by total distance (km). 
The CLEM7 tunnel uses camera imaging 
technology to collect relevant vehicle information, 
which includes date and time stamped license plate 
numbers (LPNs). The LPN data were cross-
referenced with vehicle registration information from 
the Queensland Department of Transport and Main 
Roads (DTMR), and each vehicle was assigned a 

corresponding COPERT Australia vehicle class. 
About 13% of LPN could not be matched with 
Queensland vehicle registration data, reflecting 
unidentified LPNs and interstate and unregistered 
vehicles. As a consequence, the distribution of 
vehicles over the 226 COPERT vehicle classes was 
effectively based on a fleet sample covering 87% of 
vehicles going through the tunnel during the 
measurement period. So there is some residual 
uncertainty in the in-tunnel fleet mix, but the 
analysis should provide a reasonable estimate of 
the vehicle break down for each hour.  

4. A specific issue: high emitters 

It has long been known that fleet emissions are 
dominated by a small percentage of high emitters, 
and that the impact of high emitters is increasing. 
For instance Zhang et al. (1995) found that about 
10% of the vehicles in Melbourne were responsible 
for half or more of the total CO and HC exhaust 
emissions, and similar findings have been reported 
around the world. Emission factor data from recent 
remote sensing studies (Park et al., 2011) show 
that the skewness of emission distributions for CO, 
HC and NOx has increased over the last decade 
due to high emitting vehicles, whereas fleet-
average emissions have decreased considerably.  
Bishop et al. (2012) reported that 1% of on-road 
vehicles in the USA contributed about 10% to total 
vehicle emissions in the late 1980s, and that this 
contribution of 1% of on-road vehicles now has 
increased to about 30%. These researchers noted 
that finding, repairing, and/or scrapping only the 
highest-emitting 2% of the fleet would eliminate half 
of the exhaust hydrocarbon emissions. 
Similar findings have been reported for the 
Australian fleet. NIWA (2008) performed remote 
sensing measurements in Brisbane, Perth and 
Sydney on about 53,000 vehicles and the results 
show that 10% of the most polluting vehicles are 
responsible for approximately 70%, 60% and 50% 
of total CO, HC and NO emissions, respectively. 
So total fleet emissions are becoming increasingly 
sensitive to a small number of high emitting 
vehicles. In line with international studies, the 
CLEM7 measurements exhibit quite scattered 
emissions data, as will be shown later. This is at 
least in part due to hourly variations in the fleet mix 
(fuel type, engine and emission control technology, 
etc.).  
It also suggests that the distributions of emissions 
from vehicles in the tunnel are highly skewed. This 
skewness arises when the majority of the vehicles 
have low emissions, but some vehicles exhibit 
(very) high emission levels and have a 
disproportionate impact on total vehicle emissions. 
These vehicles are commonly referred to as ‘high 
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emitters’. Studies have shown that vehicle 
emissions of these vehicles can be e.g. 50 times 
higher, respectively, than a properly functioning 
catalyst car (e.g. Sjödin et al., 1997), and improper 
maintenance (and tampering) has been indicated 
as the principal reason for the skewness of vehicle 
emission distributions.  
This vehicle emissions behaviour reflects two main 
trends 1) the penetration of cleaner vehicles into 
the fleet over time due to increasingly strict 
emission standards and improved control 
technologies, and 2) the presence of vehicles that 
are badly tuned or have been tampered with, have 
engine issues and/or have malfunctioning or partly 
functioning emission control systems (catalysts, 
lambda sensors, faulty fuel caps, fuel injector 
malfunction, worn turbochargers, clogged air filters 
etc.). 
It is noted that there are some differences for trucks 
and cars, where e.g. truck NOx emissions are 
substantially higher than cars but more normally 
distributed. For instance, Jiménez et al. (2000) 
performed remote sensing measurements and 
concluded that the ratio of maximum to minimum 
NOx emissions is 7 for trucks and 750 for cars, 
reflecting both the impacts of improved vehicle 
engine and emission technology and high emitters.   
Interestingly, under-representation of emissions 
from high emitters in the US MOBILE emission 
factor model was considered to be one of the chief 
reasons for MOBILE under-predicting real-world 
fleet emissions (NRC, 2000).  
So it is important to include these valid outliers in 
the determination of composite emission factors 
from the in-tunnel measurements. However, this 
can pose specific issues in the model fitting process 
that need to be addressed, as will be discussed in 
the next section.  

5. Method 

A composite emission factor (e, g/VKT) is 
computed when total tunnel emissions (g/h) are 
divided by total travel (VKT/h) for each hour of 
measurement. These normalised hourly emissions 
can then be plotted against the percentage of 
heavy-duty vehicles (PHDV) and a simple linear 
regression model can be fitted: 

� = α + β	���� + 	  (1) 
In this model, a and b are fitted regression 
coefficients (intercept and slope, respectively) and ε 
is the error term. This model is useful as it can be 
used to estimate the mean emission factors 
(including 95% confidence intervals) for light-duty 
vehicles (LDV) and heavy-duty vehicles (HDV) by 
setting PHDV to zero and 100%, respectively. 
As a first step, hours with reduced average speeds 
less than 75 km/h (due to e.g. maintenance) were 

removed to ensure homogeneous and comparable 
traffic conditions. In addition, data points with less 
than 1 vehicle per minute were removed. This is 
important because hourly data with a small number 
of vehicles can be significantly influenced by errors 
in urban background concentrations, in particular 
for pollutants with relatively high background levels 
such as PM.  
It has been assumed that the occurrence of high 
emitters in a particular hour will significantly affect 
the average emission factor (g/km) and will show 
up as outliers in the emissions data.  
So a two-step approach was employed in the 
regression analysis. First a robust weighted linear 
modelling (RWLM) approach was used to identify 
outliers in the hourly emissions data for each 
pollutant. This regression is weighted with the total 
VKT for each hour and thus accounts for the higher 
accuracy of data points with more vehicles.  
Any hourly emission values that exceed the median 
value plus three times the standard deviation are 
tagged as outliers. These values are shown with 
red ‘+’ symbols in Figure 1, which shows an 
example for CO.  

 
Figure 1. Measured CO fleet-averaged emission factors, 
fitted model including 95% prediction interval and outliers 
(red +). 
 

RWLM is not sensitive to outliers, which is useful 
for the outlier detection method discussed before, 
but at the same time does not properly reflect high 
hourly emissions in the model.  
So, as the second step, a weighted ordinary least 
squares (OLS) linear regression was performed on 
the hourly emissions data without outliers to 
compute the regression coefficients and their 
standard errors. This regression is again weighted 
with total VKT for each hour. The final regression 
model is defined as: 

� = ϕ+ α + β	���� + 	  (2a) 

ϕ = �
��� × �
  (2b) 

The ‘high emitter’ emission offset ϕ is computed as 
the mean of the hourly emission values that were 
tagged as outliers (eh) multiplied with the proportion 
of outliers in the data. It is thus assumed that 1) 
high emitters form a low portion of the fleet and 
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occur randomly in time (see below), 2) they 
significantly impact on normalised emissions (g/km) 
when they are in the tunnel, and 3) they are not 
significantly affected by the proportion of HDVs. 
For the CLEM7 data the number of hours with 
outliers (significant ‘high emitter impacts’) was 5% 
for CO and 2% for NOx, NO2 and PM2.5. This 
percentage is in line with overseas reports. For 
instance, Choo et al. (2007)  analysed 837,829 I/M 
test results in California and found that 
approximately 4.6% of all vehicles are labelled as 
‘gross polluters’. 
Residual analysis (Hair et al., 1998) was performed 
to verify that the assumptions of regression analysis 
were not violated (e.g. homoscedasticity and 
normality of error terms). 

6. Results 

Validation results are shown here for three 
pollutants, i.e. CO, NOx and PM2.5.  

6.1. CO emission factor validation 
Figure 2 shows the results for CO. 

 
Figure 2. Fleet-averaged CO emission factors for LDVs 
and HDVs including 95% confidence intervals and 
comparison with COPERT Australia/PIARC. 

Composite hot running emission factors computed 
with COPERT Australia are shown for both the 
average Queensland fleet (‘QLD’) and for the tunnel 
fleet mix (‘CLEM7’). The computed PIARC CO 
emission factor is based on the actual fleet mix in 
the tunnel and includes the impacts of road 
gradient. PIARC does not estimate the impacts of 
piston flow on emissions. 
The regression model predicts a composite LDV 
CO emission factor of 1.4 g/km (±6%). The PIARC 
CO emission factor for LDVs is 81% higher than the 

value measured in the tunnel, and this difference is 
statistically significant (p < 0.05).  
COPERT Australia predicts an average LDV 
emission factor of 1.8 g/km for the Queensland 
fleet, but a substantially lower value of 0.8 g/km for 
the actual fleet mix in the CLEM7 tunnel. This 
shows the large impact of variation in local fleet mix 
on vehicle CO emissions.  
The LDV COPERT Australia emission factor for CO 
at high speed driving conditions is 44% lower than 
the value measured in the tunnel. This difference is 
statistically significant (p < 0.05).  
A possible reason for the underestimation of CO 
emissions in COPERT could be additional 
emissions due to cold starts and road gradient. 
These are not reflected in the COPERT Australia 
(hot running) emission estimates for the CLEM7 
tunnel, but both have a substantial impact on CO 
emission levels. The PIARC method for the CLEM7 
tunnel suggests an increase in the CO LDV 
emission factor of 34% due to road gradient effects. 
Similarly, Cold starts contribute, on average, 42% 
to total CO emissions for the Queensland fleet (UQ, 
2014). These factors reduce the prediction error 
substantially, as shown in Figure 2, but it is likely 
that other factors such as high emitting vehicles in 
the on-road fleet also play a role.  
Setting PHDV to 100%, a negative composite HDV 
emission factor of –0.1 g/km is estimated for CO 
with the tunnel model, with a 95% confidence 
interval of -1.0 to +0.8 g/km. This large uncertainty 
in the predicted values is expected, given the low 
percentage of HDVs in the on-road fleet causing 
large extrapolation effects. The COPERT Australia 
CO emission factor for HDVs is 0.7 g/km and falls 
inside the 95% confidence interval, and the 
difference is therefore not statistically significant (p 
< 0.05)1.  
The computed PIARC CO emission factor for HDVs 
is about 80% higher than the COPERT Australia 
value, and significantly different (p < 0.05) from the 
tunnel value. 

6.2. NOx emission factor validation 
Figure 3 shows the results for NOx. The regression 
model based on tunnel measurements predicts a 
composite LDV NOx emission factor of 0.5 g/km 
(±7%). The computed PIARC NOx emission factor 
for LDVs is similar (3% lower) and this difference is 
not statistically significant (p > 0.05). 
COPERT Australia predicts an average LDV NOx 
emission factor of 0.7 g/km for the Queensland 
fleet, but a substantially lower value of 0.3 g/km for 

                                                      
1 Cold start effects on the CO HDV emissions are expected to be 
insignificant. The PIARC method for the CLEM7 tunnel suggests an 
increase in the CO HDV emission factor of 6% due to road gradient 
effects. 
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the actual fleet mix in the tunnel. These values 
have been corrected for the impacts of road 
gradient and piston air flow in the tunnel using the 
P∆P software (see Smit and Kingston, 2015 for a 
detailed description).  
 

 
Figure 3. Fleet-averaged NOx emission factors for LDVs 
and HDVs including 95% confidence intervals and 
comparison with COPERT Australia/PIARC. 

The corrected LDV COPERT Australia NOx 
emission factor is 38% lower than the value 
measured in the tunnel and this difference is 
statistically significant (p < 0.05). This may reflect to 
some extent cold start and humidity effects, and a 
higher-than-expected proportion of (diesel) vehicles 
with maintenance issues. The last point is of 
interest as there is a lack of high quality empirical 
vehicle emissions test data for Australian light-duty 
diesel vehicles in particular. This is in contrast to 
light-duty petrol vehicles for which extensive 
emission test programs have been carried out in 
Australia. As a consequence, European emission 
algorithms for diesel cars were directly used in 
COPERT Australia, and it is the only vehicle type 
that does not reflect Australian vehicle emission 
measurements.  
The tunnel measurements produce a composite 
HDV NOx emission factor of 5.2 g/km (±10%). The 
computed PIARC NOx emission factor for HDVs is 
almost 60% higher and this difference is statistically 
significant (p < 0.05).  
COPERT Australia predicts an average HDV NOx 
emission factor of 6.6 g/km for the Queensland 
fleet, but a substantially lower value of 3.9 g/km for 
the actual fleet mix in the CLEM7 tunnel. These 
values have been corrected for the impacts of road 
gradient and piston air flow in the tunnel using the 
P∆P software. The corrected HDV COPERT 
Australia NOx emission factor is 18% lower than the 

value measured in the tunnel, and the difference is 
statistically significant (p < 0.05). This may reflect 
heavy-duty diesel vehicles with e.g. maintenance 
issues and elevated NOx emissions that are not yet 
fully reflected in the software. 

6.3. PM2.5 emission factor validation 
Figure 4 shows the results for PM2.5. The tunnel 
measurements produce a composite LDV PM2.5 
emission factor of 15 mg/km (±14%). PIARC does 
not provide PM2.5 emission factors. COPERT 
Australia predicts an average LDV emission factor 
of 31 mg/km for the Queensland fleet, but a 
substantially lower value of 15 mg/km for the actual 
fleet mix in the CLEM7 tunnel, which is similar to 
the value measured in the tunnel. 
The regression model predicts a composite HDV 
PM2.5 emission factor of 137 mg/km (±19%). The 
COPERT Australia PM2.5 emission factor for HDVs 
is 118 mg/km and 14% lower than the measured 
value. It falls within the 95% confidence interval, so 
this difference is not statistically significant (p < 
0.05).  
 

 
Figure 4. Fleet-averaged PM2.5 emission factors for 
LDVs and HDVs including 95% confidence intervals and 
comparison with COPERT Australia. 
There are a number of factors that complicate the 
comparison of COPERT PM2.5 emission factors 
with results derived from the tunnel study. Firstly, 
background concentration levels are relatively high 
for PM and errors in background concentration data 
can significantly impact on results. There are also 
significant differences between the empirical base 
for the COPERT software and the tunnel results. 
Whereas laboratory emission measurements are 
conducted under strictly defined and controlled 
conditions, the tunnel PM samples measure 
particles that have aged (typically 8 minutes after 
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emission from exhaust pipe) and have undergone 
several processes such as nucleation, coalescence 
and condensation that may significantly affect PM 
mass concentrations. Finally, tunnels are 
uncontrolled with respect to impacts of non-exhaust 
particulate matter emissions, and could be 
significantly influenced by  e.g. trucks carrying 
dusty loads. Estimates of non-exhaust emissions 
are included in COPERT, but are uncertain. Given 
these considerations, the validation results for PM 
show a remarkably good performance of COPERT 
Australia. 

7. Discussion and conclusions 

The following conclusions are derived from the 
validation work for driving at about 70 km/h in 
tunnel conditions (road grade, piston effect): 

• PIARC emission factors generally show the 
largest prediction errors, except for one 
very good agreement for LDV NOx. 

• Composite emission factors in COPERT 
Australia are not significantly different (p < 
0.05) from those measured in the tunnel in 
3 out of 6 cases. 

• COPERT Australia emission factors for 
NOx (HDV only), and PM2.5 (all vehicles) 
have prediction errors within ±25%. 

• COPERT Australia LDV emission factors 
for CO and NOx are larger, and these 
emissions are substantially underestimated 
by about 40%.  

The validation results appear to be good. For 
instance, a review of 50 international vehicle 
emission model validation studies showed that 
reported model prediction errors are generally 
within a factor of 2 for NOx and within a factor of 3 
for CO and PM, although differences as high as a 
factor of 5 have been reported (Smit et al., 2010) .   
COPERT Australia generally performs significantly 
better than PIARC and has the added benefit of 
being capable of estimating emissions for a large 
range of pollutants, whereas PIARC provides 
estimates for CO and NOx only. COPERT Australia 
emission factors based on the average Queensland 
fleet generally provide conservative emission 
factors for tunnel conditions so it is recommended 
that these values are used for tunnel air quality 
assessments when tunnel emission measurements 
are not available. 
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