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Abstract 

 
Portable Emission Measurement Systems (PEMS) have recently become widespread in collecting real-
world emission information from vehicles. The Environmental Protection Department of Hong Kong 
(HKEPD) has been carrying out vehicle emission measurements by means of PEMS. The collected data 
are used to generate real-world emission factors for the particular environment and vehicle types. For 
this reason, emission information needs to be verified in a systematic manner by using extensive Quality 
Assurance / Quality Control (QA/QC) methods. 
In this study, the authors attempt to devise proper criteria to verify PEMS data measurements and 
subsequently develop corresponding automated algorithms aiming to highlight a variety of potential 
abnormalities such as single or clustered outliers, analyser measurement saturation and zero drift.  
Results show that the proposed set of detection and verification algorithms can be used for PEMS data 
to create a robust, efficient and cost-effective screening protocol that will guarantee a quality level, 
adequate enough to check the data prior to using them for emission factor development. Visual time-
series analysis is still a necessary tool to rule out any prediction errors. 
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Introduction 

Portable Emission Measurement Systems (PEMS) have been under the spotlight as of late, in view 
of the developments and resulting need for accurate emission measurements in realistic driving 
conditions. PEMS systems are versatile emission and exhaust flow measurement equipment with the 
capacity to provide accurate, second-by-second emission information for gaseous and particulate 
pollutants. PEMS are installed on board the vehicle and are powered by an independent source (on-
board batteries). With PEMS on, each vehicle can be operated in its usual driving conditions, while its 
emissions are being measured. PEMS therefore provide realistic emission information of high 
resolution, which is difficult, if not impossible, to obtain otherwise. 

As a result of the high resolution, PEMS generate large datasets with pollutant emission rates as 
well as other secondary information. From the perspective of accurate vehicle emission prediction, a 
large database of empirical data is essential to adequately reflect the large variability in real-world 
emission profiles from different vehicles and different engine and driving conditions. However, it is also 
vital to use verified emissions data in emission factor development to prevent prediction errors. Given 
the large amount of data, efficient and effective screening methods are needed to filter out erroneous 
measurements. Even data from high quality test facilities such as certification-grade laboratories 
require scrutiny and verification as there are several steps in data collation that can lead to errors, e.g. 
manual data entry typos and erroneous data can still be overlooked and included in the database.  

The Environmental Protection Department of Hong Kong (EPD) has collected and continues to 
collect a large number of vehicle emission measurements utilizing PEMS. The large number of 
emission data produced even on a single vehicle are useful to check the emission performance of the 
particular vehicle, but also, more generally, to understand emission phenomena. Combined with 
emission measurements from other vehicles and properly processed, these data may generate real-
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world emission factors for the particular environment and vehicle types. For this reason, the collected 
emission information needs to be verified and organized systematically; the sheer quantity of available 
PEMS data requires effective quality control and assurance (QA/QC) methods that use specific 
verification statistics and automated computation and visualisation techniques to ensure invalid data 
are flagged, corrected or removed, while ensuring that valid outliers are maintained. 

The Hong Kong landscape combined with the driving regulations and typical traffic conditions 
constitute a measurement environment with certain characteristics; it is mainly an urban area with a 
hilly terrain. The speed is controlled by traffic lights and is usually maintained below 50km/h in urban 
areas and between 80 and 110 km/h in highways, while the speed limit for heavy duty vehicles is set 
to 70 km/hr.  

The PEMS measurements conducted by EPD are mainly focused on NOx and PM emissions. 
Moreover, On-Board Diagnostics (OBD) are not readily provided for most vehicles.  Because of Hong 
Kong landscape particularities, i.e. high buildings in dense urban environment, GPS recordings may 
contain gaps due to satellite signal loss. Due to that, speed measured by a speedometer on the wheel 
of the tested vehicle with dead reckoning is used alongside GPS. Finally, the entire procedure for 
PEMS data measurement, collection and processing is consistent with the requirements of CFR1065, 
ISO16183 and Regulation (EU) No 582/2011 with corresponding UNECE Regulation No 49. 

EPD has already in place an established method to collate and organize data from different PEMS 
measurement campaigns. With regard to measurements, five main components are being recorded: 

• Gaseous pollutants, including CO, CO2, NO, NO2, and total hydrocarbons (THC), utilizing a 
number of different PEMS systems of different manufacturers and generations. 

• Integrated particulate matter (PM) and real-time PM, again utilizing different PEMS units. 

• Pollutants speciation and non-regulated pollutants, like NH3, N2O using Fourier-Transform 
Infrared Spectroscopy (FTIR). 

• Global Positioning System (GPS) data, including position, altitude and speed.  

• Vehicle relevant information, including speed measured on the wheel of the tested vehicle and 
OBD data if available. 

Vehicles equipped with PEMS devices and peripherals will follow a target vehicle with the similar 
characteristics, which will then operate on its regular driving route (car chasing). Apart from this 
method, PEMS-equipped vehicles can also follow a fixed course. Both of these approaches are used 
for all vehicles except buses. 

The current measurement sample exceeds 250 vehicles in several categories by using a variety of 
PEMS and other monitoring and recording devices over a range of routes and operational conditions.  

Various data summary statistics can be used in a quality assurance and screening process to 
identify unrealistic and suspicious data. They range from basic statistics such as ‘maximum value’ and 
‘number of missing values’ to the results produced by specific verification algorithms. A challenge with 
the use of summary statistics is the determination of accurate and robust pass/fail criteria. These 
criteria are developed through inter-comparison of PEMS data with vehicle-specific data, and, in some 
cases, for several vehicles within a particular vehicle class. 

In this paper, we present different QA/QC procedures in order to verify the PEMS data being 
collected by EPD. The analysis focused on second-by-second data of gaseous and particulate 
pollutants. The proposed screening protocol applies algorithms to detect issues in the overall test 
statistics and includes data pre-processing, speed smoothing, driving behaviour verification and basic 
statistical analysis of emission rates. A second step examination focuses on specific pollutant traces 
and includes specific routines for clipping detection, statistical analysis indices, baseline drift detection 
and outlier detection. The criteria behind these procedures aim to pinpoint a variety of abnormalities 
such as single or burst outliers, analyser measurement saturation and zero drift. 

1. Methodology 



The proposed methodology applies verification procedures in two consecutive phases, each 
applied at a different level of detail: 

• verification of overall test validity and integrity, and  

• verification of individual pollutant trace integrity. 

The concept of this approach is first to subject the data to a general screening, so as to remove any 
obviously compromised measurements and ensure that abnormalities are detected and flagged or 
corrected; this would often mean that entire tests would be discarded or modified as a whole. Then, 
the second phase deals with more specific issues, focusing on individual pollutant traces to identify 
occurrence of errors either at a test level or at a time stamp level (single errors or bursts of errors). 

In order to apply the verification protocol, first a number of statistics have to be calculated using the 
original dataset. The proposed screening protocol is designed to handle issues on gaseous and 
particulate real-time (second-by-second) PEMS data measurements in conjunction with real-time 
speed data measurements. The two distinct levels of verification steps will hereinafter be denoted as 
Phase 1 (overall test level) and Phase 2 (individual trace level) respectively, while the preparatory step 
will be referred to as Phase 0. A summary of the approach is presented in Figure 1. Details for each 
procedure are provided in the following paragraphs. 

 
Figure 1. Screening protocol process 

 
Phase 0: Data pre-processing 

This first step addresses time gaps developed when intermediate time-stamps are missing from the 
PEMS data set e.g. due to transcription errors. This step enables the application of the follow-up 
verification phases, which require complete time series at least split on a sub-trip level. Sub-trips are 
defined as continuous and uninterrupted periods of travel time for a unique vehicle. Sub-trips are 
identified by computing the time difference (Δt) between consecutive time stamps, and flagging Δt>1 
s.  

The addition of this metadata yields continuous second-by-second values within each sub-trip; this 
is necessary to allow speed smoothing to take place and more importantly to calculate acceleration 
values as part of the Phase 1 verification.  

Speed smoothing may be optionally applied to the speed-time column to account for measurement 
noise and to prevent unrealistic computations of acceleration and engine power, in particular at higher 
speeds. A T4253H smoothing can be used in this approach (Velleman 1975, Velleman 1980); T4253H 
is a nonlinear data smoothing filter which can provide a practical method of finding smooth traces for 
data confounded with possibly long-tailed or occasionally spiky noise. The smoothing algorithm is 
resistant to the effects of extreme observations that are not part of the local pattern and capable of 
responding rapidly to well-supported patterns. Speed-time smoothing is also conducted at the sub-trip 
level within each vehicle data test to prevent unrealistic jumps at sub-trip end points. 

In the next part, statistics pertaining to second-by-second speed and individual pollutant traces will 



be extracted. It is useful to examine derived variables as they can readily reveal unrealistic recordings, 
which can then be traced back to particular issues with the PEMS measurements. The following speed 
trace summary statistics are computed for each unique vehicle data test: 

• idle time (s), 

• proportion of idle time (-), 

• number of missing values in the speed trace (s), 

• proportion of missing values in the speed trace (-), 

• total length of all trips (s), 

• average absolute deviation (AAD) in between raw and smoothed speeds (km/h), 

• maximum absolute deviation (MAD) in between raw and smoothed speeds (km/h), 

• minimum/maximum speed (km/h), 

• minimum/ maximum acceleration (m/s2), with acceleration being computed using smoothed 
speed. 

A number of basic statistics are computed for the pollutant emission rates (expressed in g/s) at test 
level: 

• minimum, mean, maximum (MIN, MEAN, MAX), 

• proportion of zero values (PZERO), 

• proportion of missing values (PNA), 

• proportion of negative values (PNEG), 

• standard deviation (SDEV), 

• coefficient of variation (COV), 

• peak-to-mean ratio (PTM). 

Figure 2 illustrates an example of the basic statistics table for PM sec-by-sec data, containing the 
metrics described above. 

 
Figure 2. Example of summary statistics table (PM) 

 
Finally, before proceeding to the actual verification algorithms, visualisation of empirical data is an 

effective way of summarizing various key aspects of PEMS data, and facilitating further detailed 
analysis of potential issues. Time-series and other summary plots need to be generated for each 
vehicle data set for different variables, and saved for possible use in the screening process.  



 
Figure 3. v-t-power plot example 

 
Figure 3 shows an example of a ‘v-t-power’ plot which depicts the vehicle speed versus the elapsed test 
time derived from a PEMS data test. Coloured bars are used in these plots to provide additional time-
series information, such as ‘idling’ (black bars), and ‘missing/not available values’ (green bars, not visible 
in this plot). The vertical grey dotted lines show 500 m drive segments. On the top of this figure, 
additional average statistics, as noted previously, are illustrated: Idling time and its proportion vs. the 
total test time, the average absolute deviation between raw and smoothed speeds and the maximum 
absolute deviation in between raw and smoothed speeds.  

Phase 1: Overall test validity and integrity 

The goal of this verification phase is to study the pre-processed data provided after the completion 
of Phase 0 in order to investigate whether basic trip metrics such as speed, acceleration and pollutant 
basic statistics at an aggregated test level fall within plausible ranges. The approach is valid only for 
real-time, sec-by-sec measurement data. 

The overall test integrity procedures are expected to target the following issues: 

• Instrument errors, including calibration and zero/span issues, data gaps in the recordings, 
misalignment in synchronization and time scales, measurements below detection limits, over the 
range (instrument saturation) values, etc. 

• Errors in the transcription of the different files, such as value separation issues, digits changes 
(often confusion with point or comma decimal separator), unknown or variable units scales, lack 
or erroneous transfer of manual information stored in log files, etc. 

• Vehicle operation specific abnormalities, e.g. cold start operation, regeneration modes, in 
particular for DPF equipped vehicles, and specific operation windows. 

• Protocol gaps, including lack of correct monitoring of environmental conditions (e.g. on-road water 
load during rainy conditions), lack of monitoring of vehicle and instrument preconditioning patterns, 
etc. 

• Other reasons which may be random or systematic, but may not be possible to identify (i.e. specific 
instrument errors in the recordings, PEMS system faults, etc.) 

A number of procedures were developed to address these issues. The procedures fall in the 
following four categories: 

1. Operation feasibility verification 

2. Speed trace statistics verification 

3. Pollutant trace average statistics verification 

4. Visual time-series inspection 

The first three procedures provide methods to verify statistics related to the speed trace or pollutant 
traces at an aggregated level (overall test). The fourth procedure can be used to verify the validity of the 



potential issues raised by procedures 2 and 3. These procedures are analysed below. 

 

Operation feasibility verification 

Ideally, second-by-second engine power could be used to identify unrealistic vehicle operation. This 
could be done by using either measured or computed instantaneous engine power and normalizing 
these values over rated engine power. Any exceedance of a value of 1 (plus an error margin, e.g. 25%) 
would indicate unrealistic operation, i.e. an erroneous recording. The issue with this approach is that 
there is often a lack of accurate road gradient information to be used to predict second by second engine 
power. 

For this reason, an alternative approach was implemented. The operation feasibility verification 
algorithm aims to flag extreme accelerations for vehicles falling into different power-to-weight ratios 
(PTW). In order to accomplish this, a model was devised to portray the relationship between 
acceleration and vehicle class. The maximum possible acceleration is expected to be a function of 
rated engine power, or rather PTW ratio. For example, heavy duty vehicles (HDVs) with a low PTW 
ratio will not be able to accelerate as quickly, as light duty vehicles (LDVs) with a high PTW ratio.  

First, a range of typical drive cycles per vehicle type and driving mode were designed (Smit, 2006), 
on the basis of statistical analysis of smoothened speed-trace data of the vehicles in the sample. 
Different driving profiles were designed according to the vehicle PTW ratio, defined as rated engine 
power divided by Gross Vehicle Weight (GVW). 

Examples of this procedure are shown in Figure 4 for passenger cars and buses, which represent 
two different PTW classes. This is essentially a scatter plot of all individual speed points and associated 
accelerations of the drive cycles. It is clear that the maximum possible acceleration is a function of both 
instantaneous speed and vehicle class. 

 
Figure 4. Scatter plots of instantaneous speed versus acceleration (Left: PC; Right: BUS). 

To complete the model, first the maximum acceleration was computed for 10 km/h speed bins for 
each PTW class. These values are depicted as red dots in Figure 4. A non-linear regression model 
was fitted to these data. It was assumed that a reverse sigmoid function would best describe a 
maximum feasible acceleration model for each drive cycle. Figure 5 shows the results of the regression 
for four PTW classes and two vehicle types, i.e. HDVs (PTW of 8 or 15 kW/ton GVW) and LDVs (PTW 
of 25 or 55 kW/ton GVW). In general, the reverse sigmoid functions appear to fit the data well, in 
particular for the HDVs, but they may overestimate maximum feasible acceleration at higher speeds 
(>90 km/h). An error margin of 30% was added to the model and this constitutes the limit above which 
acceleration appears infeasible. 
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Figure 5. Maximum feasible acceleration models 

 

The final models for LDVs and HDVs extracted via this process are shown by the following 
equations: 

𝑳𝑳𝑳𝑳𝑳𝑳: 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = (−0.25 + 0.01 𝑃𝑃𝑃𝑃𝑃𝑃) + 1.30 �0.70 +
1.53

1 + 𝐸𝐸𝐸𝐸𝑃𝑃 �𝑣𝑣 − 50
10 �

�  

𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃 ≥ 25 𝑘𝑘𝑃𝑃/𝑡𝑡𝑓𝑓𝑡𝑡 𝐺𝐺𝐺𝐺𝑃𝑃 
 

𝑯𝑯𝑳𝑳𝑳𝑳: 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = (0.43 + 0.07 𝑃𝑃𝑃𝑃𝑃𝑃) × 1.30 �0.18 +
1.11

1 + 𝐸𝐸𝐸𝐸𝑃𝑃 �𝑣𝑣 − 50
10 �

�  

𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃 ≥ 8 𝑘𝑘𝑃𝑃/𝑡𝑡𝑓𝑓𝑡𝑡 𝐺𝐺𝐺𝐺𝑃𝑃 

Here, amax represents the maximum feasible acceleration (m/s2), v is the instantaneous vehicle 
speed (km/h) and PTW is the ratio of rated engine power to GVW.  

With the maximum acceleration – PTW – vehicle class modelling in place, the operation feasibility 
verification procedure only requires the vehicle information, which is casually available with the PEMS 
data. With this data, the verification procedure calculates the PTW of the vehicle and classifies the 
vehicle as either LDV or HDV. It then uses the respective equation above to verify whether the 
calculated acceleration values of the PEMS data are acceptable or not, flagging such test/time stamps 
as having a suspicious driving behaviour. 

 

Speed trace statistics verification 

This procedure was used to investigate whether other basic speed-time statistics comply with 
expected values: 

• The proportion of idling time may indicate a problem in the test (measurement issue). 

• The proportion of missing values in the speed trace. 
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• Large deviations between the smoothed and original speed traces. 

The exact limits for these metrics may need to be customized to the studied data set, but e.g. if the 
missing speed values percentage within a test is close to 100%, it should probably be discarded. 

 

Pollutant trace average statistics verification 

This procedure requires a blanket screening of basic pollutant trace statistics in the overall test level 
to conduct a high level scan of the integrity of pollutant measurements and identify any issues. This 
verification procedure uses the minimum/maximum pollutant recording in the dataset and the proportion 
of zero values, negative values and missing values in the entire test duration.  

This inspection allows the identification of traces within each data test that should not be used. The 
specific limits need to be calibrated on each measured dataset, but some general guidelines are quite 
straightforward: 

• When maximum/minimum values are way off expected limits. This is vehicle- and test-
dependent (driving conditions). 

• When the proportion of missing values reaches 100% (e.g. no data if all data are missing). 
Obviously, a lower value should also invalidate the values of this trace in the data test. 

• When the proportion of negative values is too high. This also raises the issue of how to 
proceed, i.e. whether the test will be discarded or if remedial action is needed before further 
usage (e.g. correction of negative values by zeroing or marking them as missing).  

• For tests with too many zero values, similar action could be taken, especially in comparison 
with the speed behaviour. Some situations are quite intuitive, e.g. a large percentage of 
zero CO2 values while not idling is suspicious.  

 

Visual time-series inspection 

In Phase 1, the overall test examination focuses on the visual examination of second-by second 
speed values. While, the previous verification procedures may suggest potential issues, a visual 
inspection is necessary to corroborate such erroneous behaviour and flag or correct those tests or 
identify situations where average statistics check may not be sufficient.  

Moreover, the computed summary statistics guide the selection of datasets that require visual 
examination and vice versa to identify untypical errors. For instance, visual examination may point out 
issues that were actually missed by the operation feasibility verification procedure. 

 

Phase 2: Individual data trace validity and integrity 

This phase specifically focused on second-by-second pollutant data trace validity and integrity. The 
individual pollutant trace verification algorithms included: 

• Use of test statistics values such as coefficient of variation and peak-to-mean ratios of 
recorded data. A challenge with these new statistics is to create accurate and robust 
pass/fail criteria, as no generic limits can be applied. 

• The identification of transient operation conditions, such cold start, fuel enrichment periods, 
regeneration patterns for DPF devices, etc.  

• Methods to detect untypical analyser drift, which may lead to shift in the measured levels 
or even saturation. 

The proposed verification procedures used for the data trace validity and integrity testing were: 

1. Visual time-series analysis (pollutant trace level), 

2. Clipping detection, 

3. COV-PTM analysis, 



4. Baseline drift detection, 

5. Outlier detection. 

 

Visual time-series analysis 

Information-dense time-series plots are created for each individual pollutant trace, and they can be 
called upon when necessary to examine second-by-second data traces combined with the speed-time 
behaviour. 

 
Figure 6. CO2 rate time-series plot. 

In these plots, blue bars indicate zero values, green bars indicate missing values and red bars 
indicate periods with constant and high values. These situations may be indicative of periods with e.g. 
clipping and DPF regeneration. This figure also contains additional statistics to enable a combination of 
visual and statistical analysis. 

Clipping detection 

Clipping is defined as the replacement of measured concentrations with the analyser’s maximum 
range value, when the concentration exceeds the analyser’s range. Clipping results to characteristic 
plateaus for a few seconds in the measured signal. Clipping may occur e.g. due to improper calibration 
during the PEMS spanning process or if the measured quantity trace is actually outside the instrument 
range. 

Clipping correction is required when high constant values are monitored for a given period. In this 
approach “clipping” is quantified with vector C, which is computed as follows: 

𝐶𝐶 = 𝑒𝑒 𝑚𝑚⁄  
where e and m represent the actual and maximum measured emission rate in g/s for a particular 
pollutant and particular vehicle. An indicator which illustrates how frequently clipping appears in a test 
is calculated by dividing the number of flagged values by the total trip duration; this indicator is noted as 
PCLIP. 

COV-PTM analysis 

Tests with relatively low PTM and COV values may reflect a significant proportion of clipped 
emissions data, or have small emission peaks, or experience a combination of both. Tests with relatively 
high PTM and COV values are indicative of data with large emission peaks (‘spiky’ data). This is the 
context around which this verification procedure is built. 

COV is computed as the standard deviation divided by the mean. COV is a normalized measure of 
the dispersion in the data. PTM is a dimensionless indicator reflecting the relative magnitude of spikes 
in the data. This ‘validation by comparison’ approach is an effective way to visually identify outliers in 
large datasets that warrant further analysis. It is noted that the PTM/COV data can vary substantially 
with pollutant, as well as with engine and emission control technology. The data should therefore be 
examined for each pollutant individually, and the data need to be categorized using an appropriate 
vehicle classification. 

Baseline drift detection 

A measurement drift algorithm was developed to quantify analyser zero drift and at the same time 
indicate the possibility for other emission events such distinction between cold/hot conditions. 
Measurement drift represents a shift in measured values under the same conditions at different points 
in time. Significant drift results in erroneous emission results, so this test parameter is quite important 



for emissions level accuracy. Despite the fact that measurement drift is usually automatically verified 
before and after a test, it is still necessary to identify tests with potential issues.  

The verification procedure aims to extract emission values for homogeneous engine conditions at 
different time intervals throughout the test. To quantify the level of measurement drift, idling segments 
need to be identified first. An idling segment is defined as a chronological time period of a few seconds 
duration with engine on and zero vehicle speed. The measured emission rates in these idling segments 
are then extracted. A certain amount of time before and/or after the idling period may be omitted to 
prevent boundary effects related to transient engine operation and extract stabilized emission rates. 

 
Figure 7. Example of speed and baseline drift time-series plots. 

A robust least-squares linear model (RLM) is then fitted to the extracted data, and a drift variable D 
is computed as follows:  

𝐷𝐷 = 100 𝑡𝑡 𝑏𝑏 𝑚𝑚⁄  

where n represents the number of extracted idling data points (s), b represents the regression coefficient 
in g/s and m represents the maximum measured emission rate in g/s for a particular pollutant and 
particular test. RLM is not sensitive to outliers, and is expected to better quantify any general trends. 

Therefore, D quantifies the percentage change in idling emission rates over time relative to the peak 
emission value. It can produce meaningful results for time-aligned hot running tests with a significant 
number of idling segments. Cold start tests will create large D values due to highly elevated emission 
levels at the start of the test. Finally, the 95% confidence interval (CI) for D can be compared with the 
intercept to verify if D is statistically significant (i.e. D is outside the 95% CI). An example of this 
procedure is shown in Figure 7. 

 

Outlier detection 

Outliers are observations with characteristics that are distinctly different from the other observations. 
Before PEMS data are used in, e.g. emission factor development, it is vital to identify these outliers and 
determine if they are valid data points. They can also have a significant impact on emission factors. 
Outliers can also arise from specific situations or issues, including errors that were produced during 
testing (e.g. incorrect measurement settings) or during the data transfer and reporting phase (e.g. data 
entry error). Outliers can be determined in various ways such as via examination of univariate and 
multivariate distributions and at different scales. The scale of outlier assessment can be at data trace 
level (single test), vehicle level (all tests) or vehicle class level (all pooled test data for all vehicles with 
similar characteristics). 

The method proposed here focuses on univariate data trace level, as any outliers detected and 
verified at this fundamental level, will prevent propagation of data issues to higher scales of assessment. 
Nevertheless, it is still recommended that emission factors based on PEMS data are compared at 
vehicle and vehicle class level to ensure any suspicious data are investigated further. 

It is noted that observations may occur normally in the outer ranges of the distribution, so the analysis 
attempts to identify those distinctive observations and designate them as outliers. Outliers can be 
detected using ‘standard z-scores’. A z-score represents the distance between the observation and the 
mean in terms of the number of standard deviations. The z-score is negative when the observation is 
below the mean value and positive when it is above. 

There is, however, one issue with this approach. Vehicle emissions are typically highly skewed with 



long tails to the right, reflecting occasional emission spikes. On the other hand, outlier detection using 
z-scores assumes an approximately normal distribution. As a consequence, PEMS emissions data need 
to be transformed before outlier detection can be applied. The aim is to achieve a more or less 
symmetrical and normal distribution of observed emission rates. 

Due to the large number of data sets, the Box-Cox procedure has been used to automatically select 
the best data transformation from a family of power transformations, and compute the transformation 
variable ‘lambda’ (λ). Transformed data equals the actual data to the power of lambda where, by 
definition, λ = 0 suggests a log-transformation.  

The z-scores are computed for pollutant traces for each test as follows: 

𝑑𝑑𝑖𝑖∗ = 1 + 𝑑𝑑𝑖𝑖 + | min(𝑑𝑑𝑖𝑖) | 

𝑑𝑑𝑖𝑖∗′ = (𝑑𝑑𝑖𝑖∗)𝜆𝜆 
𝑧𝑧𝑖𝑖 = (𝑑𝑑𝑖𝑖∗′ − 𝑑𝑑∗′) 𝑠𝑠𝑑𝑑∗′⁄  

where di is an actual pollutant data point, di* represents a vector of shifted di values, di*’ represents a 
vector of transformed di* values, zi represents the computed z-score for transformed data point i, d*’ 
and sd*’ are the mean and standard deviation of the vector of di*’ values, respectively. Using the 
previous conversion, the minimum of di* is achieved when di is minimum or: 

min (𝑑𝑑𝑖𝑖∗) = 1 + min(𝑑𝑑𝑖𝑖) + | min(𝑑𝑑𝑖𝑖) | ≥ 1 
The di* term is computed in order to create data values greater than zero; this is required for the 

Box-Cox procedure, which includes a log transformation of di* (thus the logarithm must be higher than 
zero). Z-scores have a mean of zero and a standard deviation of one. Z-score values are then used to 
determine if an observation di qualifies as an outlier. An example of this transformation is illustrated in 
Figure 8. 

In addition, the impact of removing outliers is quantified to assess the relevance of the outliers with 
respect to computed emission factors (expressed in g/km). The relevance is computed as the ratio of 
the test averaged emission factor with outliers removed (expressed in g/km) to the emission factor with 
all data included. Significant deviation from unity indicates remarkable impacts of the outliers. An outlier 
relevance impact greater or equal to 0.95 is not considered significant given the uncertainties in the 
PEMS measurements.  

 
Figure 8. Example of outlier detection in pollutant traces using z-scores 

The equivalent real-time plot for the bottom example is shown in Figure 9. The red bubbles indicate 
the time-stamps where the z-scores method has identified as suspicious if the z-score limit is set to 4. 

 



 
Figure 9. Real-time plot corresponding to the transformed data above (Figure 8) 

After outliers have been identified, a decision must be made on the retention or deletion of each 
outlier. Outliers are not by definition invalid as they may be indicative of specific cases that, although 
relatively unique, are part of real-world vehicle emissions behaviour (e.g. emission spikes).  

Given the large variability in vehicle emissions and especially if high emitters are present in a dataset, 
outliers should be initially retained, unless there is clear evidence that the data are invalid due to e.g. 
errors in recording, miscalculation, malfunctioning test equipment or other technical reasons. 

 

2. Results and Discussion 
The methodology analysed in the previous paragraphs was developed into verification routines 

using custom coding. The methodological approach was then tested on the EPD PEMS dataset in 
order to suggest calibration parameters and demonstrate examples of application for the screening. 
The pre-processing phase has been carried out prior to proceeding with the verification phases.  

Overall test verification 
For the first phase, the driving behaviour verification scheme application can outline tests with 

exceeding maximum acceleration values. Figure 10 shows an example of the summary statistics table 
extracted from a sample array of second-by-second data tests. The highlighted fields indicate 
maximum/minimum acceleration exceedance as defined in the developed maximum acceleration model 
(Operation feasibility verification procedure). 

 
Figure 10. Example of outlier detection in pollutant traces using z-scores 

 

The obtained statistical properties of the speed-time trace are also presented. A similar table for 
individual trace (PM) statistics was presented in Figure 2. A visual analysis of the speed trace is 
necessary to validate possible issues. 



 
Figure 11. Example of gaseous file with a PCLIP value of 0.11 for CO2. 

 
Individual traces verification 

For the practical application of the clipping detection algorithm, the following approach can be used: 
potential clipping is flagged whenever C > 0.995 and the number of consecutive potentially clipped 
values is at least 15 s long. In this example, the idling segment is defined as a duration of at least 9 s 
while the first 5 s and the last 3 s of each idling segment are omitted.  

An example of application is shown in Figure 11; it corresponds to a trip travelled by a petrol Euro 4 
passenger car with questionably steady CO2 values for most of the trip duration, despite the fluctuations 
in vehicle speed. Another sample test which demonstrates potential clipping is shown in Figure 12. The 
same, relatively low clip value is observed for both NOx and NO measurements. This trip was performed 
by a heavy Euro II bus equipped with DPF. 

 
Figure 12. Example of gaseous file with a PCLIP value of 0.006 for NOx. 

In order to apply the COV/PTM analysis procedure, previous lab-based work was used to define 
typical COV/PTM criteria for modal emission traces (Smit, 2013), as shown in Table 1. Note that the 
criteria for PM in this table reflect HDV vehicle technology classes up to Euro IV. 

 

 



Table 1. Emission trace verification criteria for PTM/COV 

 
To apply this verification procedure, the comparison may use these limits for modal emission traces 

from laboratory experiments as a starting point. Differences between PEMS and laboratory testing 
(sensitivity, stability, etc.) may affect the specific PTM/COV threshold values; thus, a further calibration 
is required to account for PEMS testing upon careful data inspection.  

PEMS tests of the EPD dataset indicate that there is general compliance with the lab-level criteria of 
Table 1, although it appears that PEMS PM data for newer technology vehicles exceed the PTM 
threshold of 50, indicating more spiky PM data than were observed in laboratory test conditions for Euro 
I-III HDVs. This does not mean that the PEMS data are invalid, as lower baseline PM emission rates 
with relatively high spikes are expected for vehicles with advanced emission control (in particular DPF). 

For this particular data set, the following PEMS outlier identification criteria for PM can be adopted 
instead: 

• COV < 0.7 

• PTM < 2.5 or PTM > 60 (no DPF technology) 

• PTM < 2.5 or PTM > 150 (with DPF technology) 

Figure 13 is an example of a vehicle test with very large PTM (304) and COV (10) values. This is a 
light bus with a DPF and has essentially zero PM emission levels (blue bar) throughout the trip, except 
for two consecutive peaks in the middle of the trip. 

 
Figure 13. Example of PM traces with large PTM (304) and COV (10) values 

For the gaseous emission, a minimum COV limit of 0.7 has been initially used for CO, NOx, THC 
and CO2. Upon reviewing the CO2 data results visually, new boundaries that denote potential outliers 
are suggested to account for real-world measurements: 

• COV<0.25, for passenger cars 

• COV<0.65 for all other vehicles 

Figure 14 shows an example of a vehicle test with very low PTM (1.1) and COV (0.11) values for 
CO2 data. CO2 are unrealistically steady and stay so even during idling periods. 



 
Figure 14. Example of CO2 trace with very low PTM and COV values. 

For the other gaseous pollutants, application of COV and PTM limits individually may flag several 
normal-looking trips as possible outliers; therefore a combination of COV/PTM boundaries was tested 
instead. The final thresholds were set  

• COV<0.5 and PTM<3 for CO 

• COV<0.5 and PTM<2.5 for NOx 

• COV<0.5 and PTM<2.5 for THC 

In order to test the baseline analyser drift algorithm, the limit for computed drift variable D (as defined 
in the methodology) values was set to less than -5% or more than +5%. These values are flagged as 
showing significant drift. The example illustrated in Figure 15 yields a very high positive D value equal 
to 113% for CO2 emissions. It corresponds to the same data test depicted in Figure 11 (clipping 
detection application). The top part of Figure 15 shows the speed-time visualisation of the observed 
test, while the bottom part illustrates the cumulative idling time of the same test. The orange-coloured 
shape is the regression polygon representing the drift. Zero values in the beginning of this test are 
around 2 g/s, but they exceed 15 g/s later on through the test. The combination of clipping and high drift 
will result in marking this trip as an outlier. 

 
Figure 15. Example of CO2 trace with large positive baseline drift value (+113%). 

Figure 16 shows the THC drift plot of a petrol passenger car with a negative D value of -91%. The 
plots show a large negative drift of the THC emissions traces over time as shown in the bottom part 
starting from 0.012 g/s and reaching 0 g/s; this clearly illustrates a cold start and this trip is flagged as 



such. The corresponding speed-time visualization of this test is shown in Figure 17. 

 
Figure 16. Example of CO trace with large negative baseline drift value (-21%). Drift time-series 

plot 

 

 
Figure 17. Example of CO trace with large negative baseline drift value (-21%). Speed time-

series plot 

For the application of the outlier detection scheme, the z-score limits must be defined. The sample 
test size in this dataset is typically large (n ~ 3000 s on average), so an absolute z-score threshold value 
larger than 3-4 could typically be used to flag potential outliers for normally distributed data. Should the 
transformed PEMS data exhibit notable, non-normal behaviour, a more conservative value of 5 can 
make the method more robust. 

The outlier relevance is probably a more important metric to judge if the validity of a possible outlier. 
Initial visual examination of these pollutant plots may not yield unrealistic behaviour, so the outliers 
should probably be retained.  

Examples of outlier detection results are shown in Figure 18 and in Figure 19; the former one shows 
THC emissions and is indicative of cold start, while the latter one shows a trip with a single spike in NO2 
values which yields a relevance of 0. It is however, recommended that further checks are performed for 
some of the extreme cases. 

 



 
Figure 18. Examples of trip with identified outliers (THC, z-score = -11, relevance = 0.25) 

 

 
Figure 19. Examples of trip with identified outliers (NO2, z-score = -23, relevance = 0) 

The application of the visual time-series analysis is useful tool to validate issues raised by the other 
verification procedures and especially for outlier detection. 

3. Further work 
So far, a comprehensive approach for the verification of a variety of PEMS data measurements has 

been presented. Nevertheless, there is room for further enhancements. An option for consideration is 
to use verification algorithms that apply multivariate analysis across a number of pollutants. Univariate 
analysis does not reveal observations that fall within the ordinary range of values on each of the 
pollutants, but are unique in their combination of values for the different pollutants.  

This option would require an analysis of multivariate distributions and could be achieved e.g. by 
using a statistical variable called the Mahalanobis Distance, which measures the distance in multi-
dimensional space of each observation from the mean centre of the observations.  

Also, it is recommended that emission factors based on PEMS data are compared at both vehicle 
and vehicle class level to ensure any suspicious data are further investigated. As a first step, the data 
need to be categorized to ensure comparison of emission tests for similar vehicles in similar test 
conditions. An example is illustrated in Figure 20, where several buses with similar characteristics 
(vehicle class, emission control technology, fuel, euro standard) are depicted together in terms of PTM 
vs. COV. 

 
Figure 20. COV-PTM plots for PM emissions for individual vehicle classes. 

Therefore, subsets of test data (denoted as groups) can be created, where each subset represented 
a particular combination of vehicle class, driving conditions and driving mode (hot, cold). Secondly, the 
data need to be shifted and transformed and z-scores computed for each data point. Thirdly, univariate 
or multivariate analysis can be used to detect outliers. 

To the extent possible, additional protocols should also be devised to deal with missing values, 



including consideration of possible imputation methods, and outliers (valid, invalid). 

Summary and Conclusion 
This study aimed to devise a set of automated procedures to extract verification statistics and 

visualization schemes in order to quality assure PEMS data. The overall goal is to ensure invalid data 
are flagged, corrected or removed, while at the same time valid outliers are maintained. During the first 
step of the procedure, a pre-processing of the PEMS data set is carried out to extract useful information 
for the verification process. Then, in the first verification step, an assessment of overall PEMS test 
validity is performed. Basic trip metrics are investigated to establish that general abnormalities are 
detected and flagged. The verification algorithm included a procedure to detect unrealistic 
accelerations as a function of instantaneous vehicle speed, generic vehicle type and power-to-weight 
ratio. A non-linear model was fitted to these data by adopting a reverse sigmoid function. The next 
verification phase focused on individual pollutant traces to identify occurrence of such errors in the 
dataset. For the gaseous and PM data, apart from visual analysis, the verification algorithms examined 
clipping, coefficient of variation / peak-to-mean ratio (COV/PTM) analysis, analyser drift and outlier 
detection. Initial comparisons used verification criteria for modal emission traces from laboratory 
experiments, but these must modified to account for PEMS testing upon careful data inspection. The 
baseline analyser drift algorithm was developed to quantify analyser drift and indicate the possibility 
for other emission events such as cold/hot operation conditions. The outlier detection method used in 
this analysis focused on univariate data trace level, as any outliers detected and verified at this 
fundamental level, will prevent propagation of data issues to higher scales of assessment. Standard z-
scores were used to implement the outlier detection protocol and the review was based on outlier 
relevance to measure their impact.  

These QA/QC procedures were applied to the Hong Kong dataset collected by EPD to illustrate 
how they can be fitted to take account of any particularities of the PEMS measurements in general as 
well as environment-specific ones. 

The overall approach provides a variety of tools to tackle different types of data measurements and 
examples of application indicate that it can successfully detect a variety of issues and suspicious 
behaviours. This verification methodology can be further expanded to include multivariate analysis 
across a number of pollutants. Also, emission factors based on PEMS data can be compared at both 
vehicle and vehicle class level to ensure any suspicious data are investigated further. 
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