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ABSTRACT 

Driver behaviour change programs have become a crucial component of broader sustainability 
goals. Assessment of such programs require (ideally) detailed information on day-to-day driving 
combined with more precise estimates of fuel consumption, vehicle emissions and potentially 
other outcomes of interest. The current paper reports on an analysis conducted on 106 Sydney 
drivers who were monitored for five weeks using a GPS device, exposed to a financial 
intervention designed to improve driving behaviour, and then monitored again for five weeks. 

Using new Australian software (P∆P), we assess the changes in vehicle emissions following the 

intervention. P∆P is specifically designed to predict second-by-second impacts on vehicle 
emissions and fuel consumption due to changes in operational conditions (driving behaviour, 
road grade, etc.). The analysis demonstrates how detailed simulation and high quality input data 
can provide a more accurate and precise indication of changes in emissions and environmental 
outcomes. The findings will be of interest to those involved in designing and monitoring driver 
behaviour change programs as well as those interested in more accurate assessments of on-
road driving and emissions profiles. 

1. INTRODUCTION 

Driver behaviour change programs have become a crucial component of broader sustainability 
goals. While many types of interventions around behaviour change have been introduced, 
interest is growing around directly incentivising improved behaviour, by attaching a price not just 
to the kilometres driven but how those kilometres are driven (Litman, 2009). The rationale here, 
although primarily safety driven, is that there could also be simultaneous environmental 
benefits, further strengthening the merits of such programs. In turn this requires (ideally) more 
detailed information on day-to-day driving combined with more precise estimates of fuel 
consumption, vehicle emissions and potentially other outcomes of interest. 

Against this backdrop, the current paper reports on a study of 106 Sydney drivers who were 
monitored for five weeks using an in-vehicle GPS device, exposed to a financial intervention 
designed to improve driving around safety outcomes, and then monitored again for five weeks. 
Previous work showed significant reductions in vehicle kilometres travelled (VKT) and speeding 
that resulted from the interventions (Greaves et al., 2013). However, the question of interest 
here is whether this translates to significant environmental benefits widening the rationale for 
the program.  

The answer to this question requires a computationally-efficient method for computing the fuel 
consumption and emissions from the GPS trace data, which in this study comprised over 80 

million second-by-second records. Using new Australian software (P∆P) in conjunction with the 
GPS data, we assess the changes in vehicle emissions following the intervention (Smit, 2013). 

P∆P is specifically designed to predict second-by-second impacts on vehicle emissions and fuel 
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consumption due to changes in operational conditions (driving behaviour, road grade, etc.). 

Following details of the P∆P model development and testing, we explain how the GPS data 
were processed and emissions computed for the analysis. Preliminary results are provided, 
before drawing conclusions as to the wider applicability of the findings. 

2. THE P∆∆∆∆P MODEL 

Various emission modelling software packages are available around the world, each with their 
own level of complexity and appropriate range of application (Smit et al., 2010). Examples are 
‘average-speed’ models (e.g. COPERT, MOBILE), where emission rates (g/veh.km) are a 
function of mean speed, ‘traffic-situation’ models (e.g. HBEFA), where emission rates (g/veh.km) 
correspond to particular traffic situations (e.g. ‘stop-and-go-driving’, ‘free-flow’) and ‘modal’ 
models (e.g. PHEM, CMEM, MOVES), where emission rates (g/s or g/ driving mode) 
correspond to specific engine or vehicle operating conditions. Whereas average speed and 
traffic situation models are designed to operate at national or city network level, modal models 
are designed for local area assessments. 

Previous investigations have shown vehicle emission models need to reflect local fleet 
composition, fuel quality, climate and driving characteristics to provide reliable vehicle emission 
predictions.  Large errors, up to a factor of 20 (Smit and McBroom, 2009), were found when 
overseas models were directly applied to Australian conditions without calibration.  

2.1 Vehicle classification and input 

The P∆P model is a new high resolution modal vehicle emission model specifically developed 
for Australian conditions (Smit, 2013). The software uses engine power (P, kW) and the change 

in engine power (∆P, kW) to simulate fuel consumption and CO2 and NOx emissions for 73 
vehicle classes. The vehicle classification is shown in Table 1. Note that ADR emission standard 
is used as a proxy for ‘emission control technology level’.  ADRs refer to “Australian Design 
Rules”, which are the emission standards adopted in Australia. 

Table 1:  COPERT Australia Vehicle Classification. 

Main Category Sub Category Fuel Type Emission control standard  

Passenger Car Small (<2.0 l); 
Medium (2.0-3.0 l); 
Large (≥ 3.0 l) 

Petrol; Diesel Uncontrolled; 
ADR27;ADR37/00-01; 
ADR79/00-05 

SUV Compact (≤ 4.0 l); 
Large (> 4.0 l) 

Petrol; Diesel Similar to PC; +ADR36 (SUV-L); 
+ADR30; (SUV-Diesel) 

Light Commercial 
Vehicle 

GVM ≤ 3.5 t Petrol; Diesel Uncontrolled; ADR36 (P); 
ADR30 (D); ADR37/00-01; 
ADR79/00-05 

Heavy Duty Truck Medium; Heavy; 
Articulated 

Diesel Uncontrolled; ADR30; ADR70; 
ADR80/00; ADR80/02-05 

Bus Light Bus (≤ 8.5 t); 
Heavy Bus(>8.5 t) 

Diesel 

The input to the model is speed-time data (1 Hz) and information on road grade, vehicle loading 
and use of air conditioning (on/off). This information is used to compute the required (change in) 
engine power for each second of driving.  

2.2 Model development 

The model uses data from a verified Australian emissions database with about 2,500 modal 
emission tests (1 Hz) and about 12,500 individual bag measurements. Each modal test contains 
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approximately 30 minutes of laboratory-grade second-by-second emissions and speed data 
based on real-world Australian driving cycles (CUEDC-P and CUEDC-D) that were developed 
from on-road driving pattern data in Australian cities. In addition to these real-world cycles, test 
data from the DT80 test cycle are used. The DT80 test is an Australian in-service emissions test 
that is conducted to assess emissions performance of on-road diesel vehicles. The DT80 test 
simulates worst-case driving conditions (e.g. full open throttle acceleration, high cruise speeds) 
in order to capture worst-case emission levels. This is useful data as it ensures that emissions 
data are available over the full range of operating conditions, including extreme accelerations. 

All modal emissions test data have been subjected to a verification and correction protocol. This 
includes time re-alignment, verification of emission traces (analyser drift, clipping) and 
computation and verification of test statistics (e.g. BSFC, mean thermal efficiency). For each 
vehicle class, one representative vehicle is selected for model development. 

First, a mathematical relationship between engine power and emission measurements during 
the actual tests is developed. Engine power (kW) is computed for each second of driving using 
dynamometer load algorithms in combination with algorithms to simulate internal vehicle losses 
due to drive train and tyre rolling resistances. The vehicle emission rate (et, g/s) is then fitted to 
the following equation: 
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Pt represents engine power (kW) at time t and is a function of operational variables (vehicle 
speed, acceleration) and vehicle characteristics (vehicle mass). For idling conditions (speed = 0 
km/h) a constant average value (g/s) is used. For non-stationary driving conditions (moving 
vehicle) a multivariate time-series regression model has been fitted using the generalised least-

squares method, where β0, …, β5 represent the regression coefficients. An autoregressive 

model is used to account for autocorrelation effects on the residuals. The variable ∆Pt quantifies 
the change in power over the last three seconds of driving and is computed as: 

 
2−−=∆ ttt PPP

         (2)
 

∆Pt aims to include “history effects” into the model. This is important because vehicle operating 
history can play a significant role in an instantaneous emissions value, e.g. due to the use of a 
timer to delay command enrichment or oxygen storage in the catalytic converter. 

Total driving cycle emissions for the vehicles selected for model development must match 

average values of similar vehicles in the empirical database. A calibration factor ϕ is therefore 
incorporated in the software. It is computed as the emission ratio of the vehicle used in model 
development to the average value for all tested vehicles of the same vehicle class. Vehicle 
emission rates in the simulation tool (et*, g/s) are then computed as: 

t

*

t ee ϕ=           (3) 

The next step is to include algorithms that predict second-by-second on-road engine power 
demand for each vehicle. A motor vehicle requires engine power to overcome all resistive forces 

while driving and to run its accessories (e.g. air conditioning). On-road power algorithms in P∆P 
account for tyre rolling resistance (vehicle loading), aerodynamic drag, inertial drag 
(accelerations, vehicle loading), gravitational resistance (road grade), drive train resistance and 
power required to run auxiliaries. The power components are predicted for each second of 
driving and require input on speed, acceleration, road grade, vehicle mass (including loading) 
and use of air conditioning. These algorithms also require vehicle specific information such as 
aerodynamic drag coefficient, frontal area and rolling resistance coefficients. This vehicle 
specific information was collected for all vehicles and hard coded into the software. 

The simulation will check for the occurrence of unrealistically high engine power during the 
simulation. This could occur, for instance, when a light-duty vehicle driving cycle is used for an 
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articulated truck. In this case the truck cannot deliver the acceleration rates required to follow 
the speed-time input data and the rated power of the truck will be exceeded.  

 

2.3 Model performance and application in previous studies 

Model validation and model verification showed that the performance results for the P∆P 
modeling software results are good with average R

2
 values of 0.65 and 0.93 for NOx and 

CO2/Fuel Consumption, respectively (Smit, 2013). These results compare well and are 
generally similar or better as compared with reported results from other models (e.g. Atjay et al., 

2005; Silva et al., 2006). The validation showed that the P∆P emission algorithms are robust 
with respect to prediction errors (RMSE) and goodness-of-fit (R

2
) and sometimes even exhibit 

improved performance as compared with the results from model verification (Smit, 2013).  

The P∆P has been combined with a microscopic simulation model (AIMSUN) to estimate 
emissions in Adelaide CBD in morning peak hours (Smit et al., 2013). The traffic software 
generated almost 10,000 second-by-second driving patterns for different vehicle types (cars, 

trucks, buses).  P∆P then estimated fuel consumption and emissions for each driving pattern. 
The highest predicted fuel consumption and emissions were associated with driving behaviour 
that involves (strong) accelerations and traffic conditions that impose significant queuing and 
idling. Driving at (approximately) constant speed and deceleration manoeuvres are associated 
with lower fuel consumption and emissions. The emission predictions were then used to identify 
air pollution or greenhouse gas ‘hot spots’ in the network, and to track how emissions at specific 
locations change over time. An example is shown in Figure 1. 

 

Figure 1:  Predicted Total NOx Link Emissions in the Adelaide CBD Network for Two Time 
Periods (07:00-08:00, left chart, and 08:00-09:00, right chart) (Source: Smit et al., 2013). 

Boulter and Smit (2013) used P∆P to assess the emission impacts of variable speed limits 
(VSL). The results are visually summarised in Figure 2. The study suggests that reduced speed 
limits can result in significant CO2 emission benefits for light-duty vehicles under free-flow 
motorway conditions, but that the results are less pronounced for more congested situations. 
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Figure 2:  Mean CO2 vehicle emission rates for different speed limits (80, 100, 120 km/h) 
and traffic conditions (FF = free flow, MC = more congested), including 95% confidence 

intervals. (Source: Boulter and Smit., 2013). 

 

3. GPS DATA 

GPS data from a broader study of driver behaviour was used as input into P∆P to examine the 
impact on vehicle emissions of a pay-as-you-drive financial intervention (see Greaves et al., 
2011 for more details).  The data comprised second-by-second GPS data collected from 106 
drivers in Sydney, Australia over a five-week ‘before’ period and a five-week period following the 
introduction of the intervention.  In addition to the GPS data, information on the drivers, trips and 
vehicles were collected.  These data were used to identify the driver of each trip and the vehicle 
class used for the emissions modelling. 

For the purposes of the analysis presented in this paper, only data for trips collected from the 
study participant were used. This ensured that comparisons between the before and after 
phases only included driving by the same person. Data from four drivers with incomplete vehicle 
information were also excluded leaving 102 drivers to be included in this analysis. 

To prepare the data for input into P∆P, the latitude and longitude of each observation were used 
to identify the spatial characteristics of each location. Subsequent to this, missing observations 
were imputed up to a maximum of five observations representing five seconds of driving. The 
imputed observations were assumed to have the same spatial characteristics as the previous 
(known) observation. The speed was calculated using the formula shown in equation 4. 

���� =	����� − 	
��� �
�����	������

���������	���������	�
�     (4) 

Where: 

spdi is the imputed speed, spdkp is the previous known speed, spdp is the previous speed 
(known or imputed), spdnkp is the next known speed, timelagt is the total missing time (in 
seconds) and timelagc is the time between the current observation and the previous known 
observation. An example is shown in Figure 3.  Smoothing of the vehicle speeds for known and 

imputed observations was conducted as part of P∆P simulation using a T4253H filter (running 
median and Hanning filter).  Information necessary for the emissions modelling was also added, 
including if the GPS data were associated with the before or after period and the appropriate 
vehicle class. Generic assumptions were also made here for gradient, loading and the use of air 
conditioning. 
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Figure 3: Example of inferred speeds 

The dataset used for import consisted of a total of 22,026,941 observations representing 

208,140 km and 6,119 hours of driving. Finally P∆P requires driving patterns to be longer than 
100m, and any patterns less than this distance are excluded. It is noted that there are a number 
of reasons for the 100 m restriction in the software: 

• the model needs speed-time data for the three seconds before t = t to compute the 
change in engine power, so drive segments need to be long enough to reduce the 
impact of "boundary effects" (i.e. assumption delta P equals zero for t = 1,2,3) 

• improve prediction accuracy through spatial aggregation 

• prevent infinite emission factors (g/km) for "idling only" input 

3. RESULTS 

The intervention comprised charging drivers for each kilometre driven with multipliers for 
speeding and night time driving. Table 2 shows the overall results. To provide an indication as to 
the impact of the PAYD intervention on vehicle emissions, drivers were divided into four 
categories based on their change in speeding (denoted as an increase or Spd+ or a decrease 
or Spd- in Table 2) and VKT (denoted as an increase or VKT+ or a decrease or VKT- in Table 2) 
between the before and after phases.  Average figures were calculated for the drivers in each of 
these groups and are shown in Table 2. 

Table 2:  Change in emissions between before and after phases 

Driver 
Category 

No. Average change (% change) 

Distance 
(km) 

Average 
Speed 
(km/h) 

CO2 

Emissions 
(kg) 

CO2 

Emissions 
(g/km) 

NOx 

Emissions 
(grams) 

NOx 

Emissions 
(g/km) 

Spd+, VKT+ 12 137.4  
(+21%) 

1.74  
(+6%) 

30.6  
(+19%) 

-5.23  
(-2%) 

71.83 
(+22%) 

0.00  
(0%) 

Spd-, VKT+ 40 206.1  
(+27%) 

-0.06 (0%) 42.7  
(+26%) 

-1.85 
 (-1%) 

110.73 
(+33%) 

0.02  
(+4%) 

Spd+, VKT- 10 -528.6  
(-51%) 

0.01  
(0%) 

-136.4  
(-53%) 

- 9.90  
(-4%) 

-338.33 
(-62%) 

-0.12 
(-22%) 

Spd-, VKT- 40 -296.0 
(-26%) 

-3.47  
(-11%) 

-56.9  
(-23%) 

8.64  
(+4%) 

-147.67 
(-39%) 

-0.06  
(-19%) 

Overall 102 -70.9  
(-8%) 

-1.26 
(-4%) 

-15.3  
(-7%) 

0.56  
(0%) 

-39.21     
(-11%) 

-0.01      
(-3%) 
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Overall, the intervention resulted in significant reductions in VKT and average speed and while it 
is not reported here, speeding (see Greaves et al. 2013). In terms of emissions, the reductions 
in VKT had a substantial impact on reducing emissions of both CO2 and NOx as expected. 
However, what is less clear, is the impacts of changes in average speed on emissions, with very 
marginal changes for NOx and increases in CO2 per kilometre with reductions in average speed. 
One possible reason for this is that because the relationship between emissions and speed is 
non-linear, taking a U-shaped curve, it is conceivable that a side-effect of the intervention (which 
was focused on safety and not emissions) is that drivers moved to a less efficient point on the 
emissions curve. 

The aggregate results, while providing an overall indication necessitates the need for a more in-
depth analysis. For this purpose, four drivers were selected for more detailed analysis, based on 
different responses to the intervention in terms of changes in VKT and speeding behaviour. 
These drivers should not be considered representative of the sample but instead illustrate the 
potential benefits of a more disaggregate analysis. The results are shown in Table 3. 

Table 3:  Change in driving behaviour and emissions between before and after phases 

 

It is interesting to explore how changes in total travel and changes in actual driving behaviour 
interact, and which one of those factors has the largest impacts. Figure 4 shows how emissions 
change with a change in VKT in the before and after phase. Data points that are close to the 45º 
line indicate that VKT is the main variable affecting the change in emissions. The change in 
driving conditions becomes more important, the further away a data point is from the 45º line. 
Figure 4 shows that VKT is generally the main factor influencing emission levels. 

 

Figure 4:  The change in total VKT versus the change in total emissions in  
the before and after phases for 4 individual drivers denoted as A, B, C, D. 

An interesting finding is that the change in observed driving behaviour generally has a mitigating 
effect on vehicle emissions, e.g. emissions increase less than would be expected on the basis 
of the increase in total travel. The exception is NOx for driver D where the change in emissions 
is larger (-78%) than the change in VKT (-56%).  

  

Before After Difference Before After Difference Before After Difference Before After Difference

A 1,464 891 -39% 37 36 -4% 232,573 147,670 -37% 42 30 -29%

B 1,056 464 -56% 36 24 -32% 181,984 90,721 -50% 45 10 -78%

C 934 1,101 18% 28 31 11% 178,668 194,436 9% 32 31 -1%

D 724 966 33% 26 29 13% 212,160 262,348 24% 641 831 30%
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Figure 5 and 6 further explore the emissions data that underlie Figure 4. (Driver B, NOx and 
Driver D, CO2 are taken as random examples). These figures show the computed emissions 
(g/km) for all GPS driving patterns in the before and after phases for each driver as a function of 
average (travel) speed, as well as the mean normalised emission levels in both phases, the 
confidence intervals and the p-values. 

 

Figure 5:  Normalised NOx emissions (g/km) for all GPS driving patterns for Driver B as 
function of average speed (left) and the mean emission factors in the before and after 

phases including 95% confidence interval and p-value (right). 

 

Figure 6:  Normalised CO2 emissions (g/km) for all GPS driving patterns for Driver D as 
function of average speed (left) and the mean emission factors in the before and after 

phases including 95% confidence interval and p-value (right). 

These initial results indicate emissions of individual GPS driving patterns are variable, in 
particular for NOx. Changes in emission rates (g/km) can be statistically significant (Figure 5) or 
not (Figure 6). It also shows that the overall emission change is a function of a large number of 
individual driving patterns in the before and after phase, each with their own unique sequence of 
idling, acceleration and speeds. Further work is required to expand the imputation method and 
simulate emissions for driving patterns smaller than 100 m, then analyse the full database in 
more detail and determine if changes in “fleet” emissions are statistically significant and what 
are the main factors driving the changes. 
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CONCLUSIONS 

This paper has presented preliminary results of a comprehensive analysis of the emission 
impacts of an intervention program where 106 Sydney drivers were monitored for five weeks 
using a GPS device. The program exposed drivers to a financial intervention to improve driving 
around safety outcomes. Assessment of the emissions impacts requires a computationally-
efficient tool that can readily use millions of second-by-second records as input.  

A new Australian software (P∆P) was employed in conjunction with GPS data for four drivers to 
explore the feasibility of this approach. It is concluded that the tool can readily be used after 
necessary GPS data preparation, which mainly involves imputation of missing records and 
speed smoothing. Analysis of the emission results for four drivers before and after the 
intervention demonstrates that changes in VKT and changes in driving behaviour both impact 
emissions. The preliminary results indicate that VKT is the main factor driving the change in CO2 
emissions in particular, whereas driving behaviour changes can result in statistically significant 
changes in NOx emissions. Analysis of the full GPS database will provide better and more 
robust information in this respect. 

While it has become increasingly easy to collect disaggregate driving behaviour information, it is 
still complex to quantify emissions. The tool presented here greatly simplifies this computation 
process, while still maintaining a sufficient level of disaggregation in the results to identify the 
key components affecting emissions. In terms of the wider policy implications, quantifying 
potential environmental benefits adds to the increasingly compelling safety arguments for 
PAYD-type interventions focused around improved driving behaviour. 
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