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ABSTRACT 

This paper discusses the development and application of a new high resolution traffic emissions 
and fuel consumption model. The model is needed to adequately address increasingly complex 
policy and research questions. Over recent years, a large body of test data has become 
available in Australia, which amounts to hundreds of hours of second-by-second emissions and 
driving behaviour data for relevant vehicle classes. The data were measured using real-world 
driving cycles that were developed from Australian on-road driving data. This large amount of 
data inspired the development of a new hybrid model with a number of innovative aspects. The 
model uses (new) model variables that reflect vehicle and driving aspects known to influence 
vehicle emissions (e.g. speed fluctuation, delta power, power oscillation) and employs a 
statistical approach to find the best empirical relationships. The algorithms are designed to 
combine an engineering and a statistical approach. This paper will discuss that the information 
generated by the model can be used in various ways, for instance to develop an emission 
inventory, to analyse the impacts of particular traffic management measures (e.g. dynamic 
speed limits, traffic signal coordination, metering signals). In this paper we will demonstrate this 
by examining the effects of congestion on emissions and fuel consumption. 

INTRODUCTION 

Road traffic is an important global source of air pollution and greenhouse gas emissions and its 
significance is increasing. It is therefore not surprising that reduction of transport emissions 
(both air pollutants and greenhouse gases) is now high on political agendas around the world. A 
number of developments around the world are expected to lead to common application of traffic 
emission models that operate a high spatial and temporal resolution:  

 An increasing interest in the effects of local scale traffic measures on traffic emissions, air 
pollution and fuel consumption. These types of measures will generate relatively small 
effects, so sensitive models will be needed to accurately predict the correct direction and 
magnitude of the effects. 

 Substantial improvements can be expected with respect to the availability and quality of 
model input data. Wide scale collection of real-time field data on vehicle movement in time 
and space is facilitated by increasing application of intelligent sensor, communications and 
computing technologies in vehicles and at the road side (e.g. Hoose et al., 2008) and by the 
growing application of adaptive traffic control measures to improve traffic flow, improve 
reliability and reduce accidents (e.g. Noland and Quddus, 2006; Panis et al., 2006).  

 Developments in high-resolution on-board emission measurements (e.g. North et al., 2005) 
will create opportunities for large on-road emission measurement databases that can then 
also be used for emission model development.  

A substantial number of complex and detailed overseas emission models already exist and are 
used extensively. In addition, commonly used microscopic traffic simulation packages such as 
AIMSUN, VISSIM and PARAMICS have already incorporated traffic emission prediction 
capabilities. It has been shown, however, that direct application of these overseas models in 
Australia and New Zealand leads to large errors that cannot be ignored (Smit and McBroom, 
2009a; 2009b). 
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The problem is that overseas emission algorithms are based on overseas vehicle emissions 
datasets, which do not reflect local driving behaviour, emission and fuel legislation (i.e. vehicle 
technology and fuel specification), climate and fleet composition. For example, compared to 
Australia, Europe has a significantly higher percentage of diesel cars, i.e. up to almost 45% 
depending on the European country (EEA, 2004) compared to about 4% in Australia (ABS 
2006). Differences in fuel and emission standards will result in different calibration of engine 
management systems and/or a different configuration of emission reduction technologies, with 
subsequent effects on real-world emissions behaviour. The Australian car fleet is also 
characterised by a large proportion of large engines (e.g. V6, V8) and a preponderance of 
automatic transmissions and 4WDs. For instance, the majority (about 75%) of the Australian car 
fleet has an engine capacity of more than 2 litres. This contrasts with the UK and Dutch car 
fleets where these vehicles only make up about 10% of the fleet because smaller engines are 
dominant (Smit, Rose and Symmons, 2010). 

All of the above aspects are known to be relevant with respect to emissions and fuel 
consumption. The issue of validity can, of course, be ignored but the risk is that poor emission 
predictions will cause poor infrastructure decisions and poor policy making decisions. The use 
of Australian driving behaviour and associated emissions data to either recalibrate overseas 
models and/or to develop a new prediction tool with improved acuracy is therefore required. 

This paper discusses the development of a new resolution road traffic emission model that: 

 is based on local empirical emissions data 

 is comprehensive, accurate, robust, transparent and easy to use and understand 

 interfaces readily with appropriate traffic models and (emerging) traffic field data 

 is able to quantify the level of uncertainty of model predictions (e.g. confidence intervals). 

MODEL STRUCTURE 

This model is a hybrid that uses (theoretical) and newly developed variables known to influence 
vehicle emissions in combination with a statistical (�black box�) approach to find the best 
empirical relationships. This model is designed to combine the �best of both worlds� in order to 
achieve the best possible outcomes. Traffic emission rates are simulated using multivariate 
regression functions for individual vehicles in the traffic stream (Smit and McBroom, 2009c-f): 
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Et,m� represents the square-root transformed predicted emission rate and 0, �, 10 represent 
the regression coefficients. This transformation was used to improve model fit and to prevent 
prediction of negative emission rates. The model variables are derived from speed-time data 
and an overview is presented in table 1 (next page).  
 
They include traditional variables such as instantaneous speed, acceleration and power, but 
also newly developed variables that quantify the change in power (∆P3t, ∆P9t) and oscillation in 
either speed (logTAD9t

N) or power (oP9t) over a pre-defined period of time prior to the point in 
time for which the prediction is made. These variables aim to quantify and include �history 
effects� into the model. This is important because vehicle operating history (i.e. the last several 
seconds of vehicle operation) can play a significant role in an instantaneous emissions value, 
e.g. due to the use of a timer to delay command enrichment or oxygen storage in the catalytic 
converter (e.g. Barth et al., 2000). 
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Table 1:  Model Variables 

Variable Formulae Units 

instantaneous speed at 
time = t * tv  m s-1 

acceleration at time = t  1 ttt dt

d
a 

 m s-2 

instantaneous power at the 
wheels at time = t ** tP  kW 

delta power over last three 
seconds at time = t 23  ttt PPP  kW 

delta power over last nine 
seconds at time = t 89  ttt PPP  kW 

oscillation power over last 
nine seconds at time = t 871 ...9   ttttt PPPPoP  kW 

logarithm of distance-
normalised total absolute 
difference in speed (TAD) 
over last nine seconds at 
time = t  

 





























8

871 ...1000
1log9log

t

t
t

ttttN
t

x

TAD


 m s-1 
km-1 

* This variable is directly obtained from speed-time data, ** This variable can be either measured directly during 
dynamometer emissions testing or can be estimated using established algorithms (e.g. Bosch Automotive Handbook). 

As we are dealing with time series-data, the statistical model also needs to account for 
autocorrelation effects. Autocorrelation is a term used to describe the relationship of data with 
itself, which occurs frequently when data is measured through time (time-series). To account for 
autocorrelation effects, we have developed first, second or third order autoregressive (AR 1, 2, 
3) statistical models.  
 

MODEL PERFORMANCE 

A large body of high-resolution and high quality Australian emissions test data has recently been 
generated for light-duty petrol vehicles, and new and similar programs are anticipated for diesel 
vehicles (�DENISE�) for the coming years. The recently completed NISE 2 study (Orbital, 2005; 
2009) provide test data for about 400 petrol vehicles on a second-by-second basis for different 
driving cycles. This is a large database (more than 500 hours of test data) compared to 
international standards. We have fitted the multivariate regression functions to these second-by-
second empirical emissions data for NOx and CO2 for 8 �typical� Australian petrol cars: 

1. Ford Falcon (passenger car, model year 1991, ADR37-00) 

2. Toyota Camry (passenger car, model year 2000, ADR37-01) 

3. Holden Commodore (passenger car, model year 2004, ADR79-00) 

4. Ford Falcon (passenger car, model year 2006, ADR79-01) 

5. Toyota Landcruiser (SUV, model year 1994, ADR36) 

6. Nissan Murano (SUV, model year 2006, ADR79-01) 

7. Toyota Hilux (light-commercial vehicle, model year 2003, ADR36) 

8. Holden Rodeo (light-commercial vehicle, model year 2006, ADR79-01) 
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Second-by-second emissions test data were obtained from chassis dynamometer tests using 
speed�time profiles that reflect real-world operation. A least-squares multiple autoregressive 
approach was used to estimate the regression coefficient values. Residual analysis was then 
used to verify that the assumptions of the regression analysis were not violated (i.e. normality of 
error terms, constant error variance and presence and effect of outlying observations). The last 
step of the modelling process involved back-transformation. 

  

  

Figure 1:  Best-Case and Worst-Case Goodness-of-Fit Plots 

The model generally predicts NOx and CO2 emission rates (g s-1) quite well with a coefficient of 
determination (R2) ranging between 0.56-0.95 for NOx and 0.89-0.98 for CO2. This means that 
56% to 98% of the variation in instantaneous emissions can be explained with the algorithms. 
Figure 1 shows four goodness-of-fit plots with the best and worst models for each pollutant. 

Figure 2 shows the worst and best time-series plots of predicted and observed emissions. It 
includes a chart showing the speed-time profile used during emissions testing (bottom chart). 
Figure 2 shows that NOx predictions are less accurate for the 2006 Holden Rodeo in specific 
circumstances, where a substantial number of large peaks cannot be explained by the model. In 
contrast, Figure 3 shows that the CO2 predictions for the 2004 Holden Commodore are nearly 
perfect and they follow the observations well. This is also the case for the emission peaks, 
which are important to assess local effects of changes in driving behaviour (e.g. due to changes 
in signal settings at an intersection).  
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Figure 2:  Measured (Line) and Predicted (Dots) High Resolution Emission Rates (1 Hz), 
Top Chart: Worst-Case Time-series Plot (2006 Holden Rodeo) for NOx, Middle Chart: Best-

Case Time-series Plot (2004 Holden Commodore) for CO2, Bottom Chart: Driving Cycle 

However, individual vehicle emissions are not of particular interest in terms of model application. 
Individual vehicle emission algorithms are useful from a modelling perspective, as they ensure 
that the large inter-vehicle variability in real-world emissions is adequately reflected in the model 
predictions for traffic streams (i.e. optimise overall model performance). However, the sum of 
emissions from all individual vehicles in a traffic stream is needed to assess the effects of road 
traffic on (local) air quality and greenhouse gas emissions. 

Figure 3 therefore shows total �traffic stream� emissions (g s-1) for all eight vehicles combined. It 
is clear from these charts that total emissions are simulated well by the regression models, with 
R2 values of 0.95 (NOx) and 0.98 (CO2). The total emissions profile is replicated well even 
though there is a difference in model performance for the individual vehicles. Total cumulative 
emissions (g) have an error of -4% for NOx and -1% for CO2, which means that the predicted 
sum of instantaneous predictions over the selected speed-time profile is 4% and 1% lower than 
the observed value. 
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Figure 3:  Time-series Plot - All Vehicles Combined (�Fleet�), Observations (Black Line) 
and Predictions (Grey Dotted Line) for NOx and CO2, Bottom Chart presents the Driving 

Cycle 
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MODEL APPLICATION: IMPACTS OF CONGESTION 

The high resolution model can be used in various ways and for different purposes. The strength 
of the model is that it is designed to be sensitive to changes in driving behaviour, which makes it 
appropriate to use in cases where others like average speed models cannot be appropriately 
used. On the other hand, the high resolution model is relatively input data intensive as it 
requires speed-time data. Speed-time data can be obtained from different sources. The most 
reliable way is to record speed�time profiles in the field using, for instance, on-board GPS 
equipment (e.g. by employing a floating car technique) or road-side video sensor and image 
processing technology. In the absence of field data for a specific local situation, there are two 
main options: 

 representative driving cycles may be used to quantify �typical� driving behaviour for a 
particular traffic situation; or 

 (microscopic) traffic simulation models can generate these data for each vehicle in the traffic 
stream.  

Some examples of model applications have been published elsewhere and they include 
assessment of the impact on emissions and fuel consumption of:  

 freeway speed limit reduction from 100 to 80 km/h with radar control (Smit and McBroom, 
2009g); and 

 a national ecodriving program (Smit, Rose and Symmons, 2010). 

In this paper we will examine the impacts of congestion on emissions. We will use a set of 
driving cycles that reflect typical driving conditions in situations with increasing levels of 
congestion on either urban roads or freeways. These cycles were developed in Europe from a 
database of recorded real-world driving patterns and associated traffic data (e.g. traffic volume, 
density) for urban (Boulter et al., 2005) and freeway driving (TNO, 2001). For freeway 
conditions, six traffic situations are defined in terms of average speed category (i.e. range of 
mean spot speeds) and traffic volume. For urban conditions, six traffic situations are defined in 
terms of speed range category and traffic density. Figure 4 and 5 present these driving cycles 
and it includes the definition of the traffic situations in the titles. 
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Figure 4:  Congestion-Specific Driving Cycles for Freeway Driving (Speed Limit = 100 
km/h) 
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Figure 5:  Congestion-Specific Driving Cycles for Urban Driving 
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The driving cycles were used as input to the emission algorithms to: 

 estimate second-by-second emission levels in grams per second, and subsequently 

 sum the second-by-second cycle emissions (grams) and divide by total cycle distance (km) 
to estimate (normalised) mean emission rates in grams per km, or rather grams per vehicle 
kilometer travelled (VKT).  

The results of the last step are presented in Figure 6 and 7. Increasing numbers on the x-axis 
correspond with an increasing level of congestion. 

 

Figure 6:  Computed Effects of Congestion on NOx Emissions (8 Vehicles) 

 

Figure 7:  Computed Effects of Congestion on CO2 Emissions (8 Vehicles) 

The simulation provides some interesting results. For NOx emissions, increasing levels of 
congestion (moving from left to right in Figure 6) result in a consistent and substantial reduction 
in emissions by about 60%. For urban driving, on the other hand, no consistent trend can be 
observed and NOx emissions appear relatively stable over the six congestion categories. The 
reason for this effect has to do with the different engine management systems used in individual 
vehicles. It is known for instance that a number of popular large Australian cars activate a lean-
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burn fuel injection strategy during freeway driving conditions, which reduces fuel consumption 
but increases NOx emissions (Smit and McBroom, 2009h).  

For CO2 emissions, the results are similar for both urban and freeway driving. CO2 emissions 
increase substantially and consistently with the level of congestion with a factor of about 2.5 
(150%) for urban driving and 2.7 (175%) for freeway driving. There is, however, a difference in 
the rate of change in emission levels with congestion. Whereas emissions increase almost 
linearly with congestion for freeway driving, emissions are relatively stable for congestion levels 
1-4 in urban driving conditions, but then rapidly increase. 

CONCLUSIONS 

In this paper we have presented a new Australian traffic emissions model that operates at a high 
resolution (1 Hz) and is sensitive to changes in driving behaviour. The paper has shown that the 
new modelling approach appears to deliver satisfactory results in terms of model accuracy, 
reliability and robustness. As a demonstration of one of several possible applications, the model 
has been used in this paper to examine the impacts of congestion on emission levels of 8 
typical Australian vehicles in urban and freeway driving conditions. 
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