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Abstract
Traffic-related air quality issues remain in urban areas worldwide. For this reason, there is an
increasing need to estimate the contribution of road traffic to atmospheric emissions at local level
with high temporal and spatial resolution. Modal models compute emission rates as a function of
specific engine or vehicle operating conditions at the highest resolution (seconds). They can be
applied for microscale studies being a cost-effective tool to emulate differences in emissions levels
in road networks. Two modal emission models, the Australian P∆P (Power-delta-Power) and the
simplified version of the European PHEM (Passenger Car and Heavy-duty Emission Model),
PHEM-light model, have been used. Also, a comparison to the cycle-variable emission model
VERSIT+micro (Netherlands organisation for applied scientific research state of the art traffic
emission model) has been performed. For the comparison of both modal models, the main
variables involved in traffic emission calculation were identified. 1 Hz speed-time profiles for
individual vehicles were generated with the traffic microsimulation model VISSIM (Vehrkehr in
Statden SIMulation) for different traffic conditions. To understand the response of modal models,
detailed estimations of NOX emissions and fuel consumption were compared for different vehicle
classes. Instantaneous emission profiles for individual driving patterns are highly sensitive to
speed-acceleration profiles, vehicle mass, and road gradient, which are essential variables for the
emission calculation. Although there are differences between European and Australian models,
engine power and load were used to map vehicle classes for a more consistent comparison. It is
essential to accurately define these parameters for each vehicle class in addition to detailed driving
patterns to obtain high-resolution emissions estimates. In this sense, a larger number of vehicle
classes included in the model provides more flexibility to develop representative emissions
estimates. Emission predictions between modal models were reasonably consistent presenting
larger differences with the cycle-variable model, despite both modal models being based on
different on-road fleet measurements. In conclusion, analysing emission estimations for different
traffic conditions demonstrates the importance of an accurate definition of the model parameters
for a specific vehicle fleet.

1. Introduction

Over recent years, significant progress has been
made in reducing emissions of greenhouse gases and
urban air quality relevant air pollutants from the
transport sector in high-income regions. However,

some traffic-related air quality issues remain in urban
areas worldwide, including Europe and Australia.

In Europe, the transport sector is still the highest
contributor to nitrogen oxides (NOX) emissions,
mainly due to road transport (responsible for 28% of
total NOX emissions considering all activity sectors)

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac8b21
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac8b21&domain=pdf&date_stamp=2022-9-7
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5916-8591
mailto:c.quaassdorff@upm.es
http://doi.org/10.1088/1748-9326/ac8b21


Environ. Res. Lett. 17 (2022) 094030 C Quaassdorff et al

and holds a significant share for other relevant pol-
lutants, such as particulate matter (PM) (EEA 2020,
2021). Non-compliance with European air quality
standards is often linked to highly polluted microen-
vironments (hot-spots) which are areas influenced by
traffic emissions with high pollutant concentrations.
Those require local intervention in addition to city-
scale plans and measures (Miranda et al 2015, Thunis
et al 2016, EEA 2021).

In Australia, passenger cars are responsible for
roughly half of the transport greenhouse gas emis-
sions (CC 2017). Similarly to Europe, air quality
standards for criteria pollutants in Australia can be
exceeded locally due to the contribution of road
traffic emissions (Keywood et al 2017).

At the local scale, emissions need to be estim-
ated for each vehicle, since they depend on individual
acceleration–deceleration patterns (Int Panis et al
2006). Suitable assessment methods include direct
measurements of exhaust emissions of single vehicles
for a complete vehicle fleet by using for instance tun-
nel studies (Hausberger et al 2003, Smit et al 2017), or
remote sensing detectors (Pujadas et al 2004, Smit and
Bluett 2011, Chen and Borken-Kleefeld 2014, Smit
et al 2021).

However, modelling techniques are needed to
anticipate the outcome of traffic-related emission
abatement measures (Perez-Prada and Monzon
2017, Borge et al 2018). Methods used to produce
mobile source emission inventories usually address
the national or regional scale and are based on a
set of emission factors from standard driving cycles
(Barth et al 1996) and aggregated vehicle activity data
(EEA 2019 for Europe, NPI 2015 for Australia) This
approach does not capture actual driving behaviour
needed to estimate high-resolution emissions.

Studies for hot-spots require high-resolution
(microscopic) emission models that can capture
vehicle emission processes at microscale (Borge et al
2014), known as type A models according to the clas-
sification of Smit et al (2008). This type of models
explicitly consider congestion through a detailed rep-
resentation of actual driving behaviour (Smit et al
2010). This is estimated for each single vehicle based
on second by second speed information (speed-time
profile) obtained from direct measurements or from
microscale traffic simulation models. Type A mod-
els include cycle-variable models where the emission
factors (emissions per travelled distance in g km−1)
are related to variables from the driving cycle (Smit
et al 2010), being the driving cycle in this case a fixed
and reproducible second by second speed-time pro-
file used for emission analyses (Barlow et al 2009).
An example of this type are the Netherlands organ-
isation for applied scientific research state-of-the art
road traffic emission model—VERSIT+—(Smit et al
2007). Type A models also include modal models
where the emission factors are calculated by engine or
vehicle operating conditions (Smit et al 2010). Those

models are deterministic based on engine variables
and vary in level of complexity and demand for input
data (Smit 2013) providing the most detailed repres-
entation of traffic emissions. Examples of this type are
the Passenger car and Heavy-duty Emission Model—
PHEM—(Hausberger et al 2009) or the Power-delta-
Power emission model—P∆P—(Smit 2013). These
are based on portable emissionmeasurement systems
(PEMS) and laboratory tests to sample vehicle emis-
sion information for model development.

Cycle-variable models, such as VERSIT+micro,
have been previously tested in urban hot-spots with
satisfactory results in comparison to an extensively
evaluated regional emission model (Quaassdorff et al
2016). Scenario-averaged emission factors estim-
ated with the VISSIM-VERSIT+micro modelling sys-
tem fitted well those from the average-speed model
COPERT (COmputer Programme to calculate Emis-
sions from Road Transport) (Ntziachristos et al
2009), reference model in Europe (EEA 2019) for
inventory compilation and used for the estimation of
city-scale (Madrid) traffic emissions in that partic-
ular application. In addition, emission results from
VERSIT+micro have been successfully incorporated in
high-resolution air quality modelling studies based
on computational fluid dynamics (CFD) (Sanchez
et al 2017). Specifically, cycle-variable emissions have
been found to perform well for stationary-state CFD
simulations based on a Reynolds-Averaged Navier–
Stokes approach (Santiago et al 2017). Nonetheless,
emissions for non-stationary simulations with higher
temporal resolution (seconds) require the integration
of modal emission models.

Despite their complexity and input requirements,
modal models have been applied to real traffic
situations. For instance, the instantaneous emission
model PHEM was coupled to the traffic simula-
tion model SUMO (Simulation of Urban MObil-
ity model) (Hausberger and Krajzewicz 2014) in
the COLOMBO project. Also, the impact of urban
driving behaviour on fuel consumption (FC) was
analysed in an Australian urban context with the
P∆P emission model coupled to the AIMSUN traffic
model (Smit et al 2013). However, the understand-
ing of the applicability and performance of different
modal models for emission estimation in real traffic
scenarios is limited.

In this contribution, two modal emission mod-
els (PHEM-light and P∆P) are applied to two urban
networks (in Australia and Spain) under different
congestion scenarios (peak and off-peak hours). The
aim of this comparison is to contribute to the under-
standing of the main differences between these two
modalmodels and their applicability to different road
network configurations in different traffic scenarios.
Those have been selected to determine the applicab-
ility of the models to different urban networks and
identify similarities in the emission calculation and
spatial distribution for those road configurations. The
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results are also compared with those of VERSIT+micro

for the same networks and scenarios. This additional
test helps understanding to what extent the increase
of spatial and temporal resolution provided bymodal
models improves the emission estimates of simpler
cycle-variable models. This work aims to (a) examine
and clarify the practical implications associated with
using different types of models, and (b) identify key
variables formicroscale emission calculation in urban
areas for the development of local road traffic emis-
sion inventories.

2. Materials

2.1. Traffic modelling
The traffic microsimulation model VISSIM has been
used to generate the information about speed-time
profiles for individual vehicles that are required
by the three emission models used in this study.
VISSIM is able to obtain individual vehicle speed-
time profiles considering traffic lights configura-
tion, traffic composition and public transport tak-
ing into account the interaction between private
vehicles traffic and public transport (Fellendorf and
Vortisch 2010). Moreover, as explained in Fellendorf
and Vortisch (2010), VISSIM does not follow the tra-
ditional link-node approach based on centroids in the
road network to distribute traffic fluxes across links
(understanding a link as a road segmentwith constant
properties). Instead, it uses a link-connector system
where links are joined on a lane basis facilitating the
creation of complex geometries. This software, widely
used for traffic research at microscale (Fontes et al
2015), is designed to reproduce realistic traffic flow
under different real-world conditions (Fellendorf and
Vortisch 2001) providing vehicle speed-time profiles
(Hirschmann et al 2010) and improved for emission
estimations (Song et al 2015). The model was calib-
rated to reproduce local traffic conditions according
to the US Department of Transportation procedures
(U.S. DOT 2019).

The main VISSIM output consists of a vehicle
record file that includes 1 Hz resolution informa-
tion of vehicle type, speed (km h−1), XY coordin-
ate (coordinates of rear end position of vehicle) and
road gradient (%) for each vehicle. Speed-time pro-
files for the individual vehicles are obtained from this
file. Considering technical characteristics and typical
driving behaviour, VISSIM uses three main vehicle
classes: (a) heavy goods vehicles (HGV), (b) cars and
(c) buses.

2.2. Emissionmodelling
P∆P (Smit 2013) is a modal emissionmodel that uses
engine power and the change in engine power asmain
variables to simulate vehicle fuel consumption (FC)
and carbon dioxide (CO2) andNOX emissions for the
Australian fleet. The model requires information on
vehicle speed (1 Hz), road gradient, vehicle loading
and use of air conditioning. The P∆P model is based

on a mathematical relationship between emission
measurements during tests and the engine power of
the vehicle. This model uses a 73-categories vehicle
classification scheme based on COPERT-Australia
(Smit and Ntziachristos 2013) that takes into account
fuel type (petrol and diesel) and Australian emis-
sion standards (Australian Design Rule—ADR—, i.e.
pre-EURO and EURO1-6/I–VI equivalent emission
standards). The main input file contains the inform-
ation regarding vehicle type (Passenger Car – PC –,
Sport Utility Vehicle – SUV –, Light Commercial
Vehicle – LCV –, Medium Commercial Vehicle –
MCV –, Articulated Truck – AT –, Light bus – BUS-
L – and Heavy bus – BUS-H –), cycle (user defined
name), time (s), speed (1Hz in kmh−1), vehicle load-
ing (% of full load), road gradient (%) and other rel-
evant parameters for the emission and FC computa-
tion (Smit 2013).

PHEM-light (Hausberger and Krajzewicz 2014),
is a simplification of the European modal emission
model PHEM (Hausberger et al 2009). PHEM-light
retains relevant information of vehicle parameters
and emission behaviour in Characteristic Emission
curves over Power (CEP) for European vehicles. These
CEP curves define the emission amount (g h−1) as
function of the actual engine power. As a result,
PHEM-light compute instantaneous FC along with
CO2, NOX, CO, Hydrocarbons (HC) and Particulate
Matter (PM) emissions for a given speed and acceler-
ation combination. The model requires an input file
containing all vehicle speeds (1 Hz in km h−1) and
road gradient (%) information for one driving cycle.
Vehicle parameters such as vehicle mass, loading or
engine rated power among others are divided into 131
classes that combines vehicle type (PC, LCV, HDV),
vehicle size class (LCV I, II, III and HDV I and II)
vehicle category (Rigid truck, Trailer Truck, Coach,
City Bus), fuel (Diesel, Petrol, Battery Electric Vehicle
– BEV–, CompressedNatural Gas –CNG–) and Euro
standard (EURO0 to EURO6c). This information is
then combined for the 1 Hz engine power computa-
tion of each individual vehicle over one driving cycle.

VERSIT+ is a Dutch multivariate regression
cycle- and vehicle-variable emission model, which
requires speed time profiles to obtain various traffic
flow variables that are used to predict representat-
ive emission factors (g km−1) for a set of 246 emis-
sion model classes (specific emission algorithms for
each combination of vehicle category and air pollut-
ant, Smit et al 2007). This model is used in this study
to contrast the results of modal models with the sim-
pler andmore aggregated approach followed by cycle-
variable models.

3. Methods

3.1. Comparisonmethodology
A comparison is made through all calculation steps
between both modal models by using scatter analysis

3
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Figure 1. General flowchart of the modelling system and comparison approach of microscale emission models. Solid lines
represent direct inputs and outcomes from the modelling system. Dashed line denotes optional inputs used for specific purposes
(spatial distribution). Reproduced with permission from (Quaassdorff 2018). CC BY-NC-ND 4.0.

to obtain the relationship between the emission rates
and FC results of the models. In order to be able to
perform this analysis, first, vehicle classes arematched
to a common classification. Then, engine power has
been computed for selected individual trips (driving
cycles) and analysed to understand the reason for dif-
ferences between P∆P and PHEM-light for the same
driving cycle and similar vehicle classes (included
in Supplementary Material—SM—). Finally, both
models have been applied to two real network case
studies and results of NOX emissions and FC have
been analysed (outputs in common in both modal
models). All computations are based on the exact
same traffic simulations provided by VISSIM. In this
case, VISSIM relies on a set of static and dynamic
traffic data that are used to obtain 1 Hz speed-time
profiles, road grade and vehicle position. Speed-time
profiles are used to feed the threemicroscale emission
models, and road grade for the modal models. Based
on these information, modal models provide engine
power results that are used to estimate the second by
second FC and emissions for individual vehicle trips
that have been compared for modal models using
scatter analysis. Emission distribution maps are gen-
erated by combining the second by second informa-
tion on emissions and vehicle position. Those emis-
sionmaps results have been compared betweenmodal

models and to the cycle-variable emission model
(figure 1).

3.2. Vehicle class mapping betweenmodels
First, in order to compare both modal models and
minimize differences among models due to the dif-
ferent vehicle fleets they rely on, vehicles classes with
similar characteristics have been matched. To obtain
an accurate mapping between models for this study,
vehicle rated engine power and average mass for each
combination of vehicle class and emission standard
has been examined. Since Australian emission stand-
ards are based on European regulations, equivalent
EURO and ADR classes based on the gross vehicle
mass (GVM) can be determined (details can be found
in SM table A1).

Main vehicle classes were attributed and matched
using rated engine power, average weight and mean
engine capacity parameters so that a representat-
ive power-to-mass (PtM) ratio could be computed
for each vehicle category. Differences in PtM were
minimized by changing the vehicle loading vari-
able defined in the input file for P∆P vehicles (for
each ADR category) to match the ratios assumed
by PHEM-light, eventually obtaining a consistent
14-category classification scheme for both models
(table 1). This match is helpful to explain differences

4
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Figure 2. Traffic microsimulation domain of 1250 m× 600 m (black rectangle) for Woolloongabba area with red lines for traffic
lights. Reproduced with permission from (Quaassdorff 2018). CC BY-NC-ND 4.0.

between the models and to identify the most relevant
parameters to estimate emissions at microscale.

It should be noted that a perfect match is not
possible due to differences between the European
andAustralian fleets. For instance, Australian vehicles
have higher average engine capacity than European
counterparts. Fleet-specific vehicle parameters that
influence the model classification, i.e. Gross Vehicle
Mass, tare weight, rolling resistance and aerodynamic
coefficients, were also compared. Both PHEM-light
and P∆P allow for adjustment of these vehicle para-
meters that are used to compare power demand in
a cycle to better reflect local fleet distributions on
demand. In this study the predefined vehicle para-
meters provided by themodels were used, thus differ-
ences in the results are related to the different model
approaches but also to different vehicle characteristics
included in those models. This reflects the real-world
differences between vehicle samples used for emis-
sions testing and subsequent model development and
calibration (sample from European fleet for PHEM-
light, sample from Australian fleet for P∆P) and will
provide an insight on the practical implications asso-
ciated with using different models in different parts
of the world.

3.3. Hot-spot networks
Two traffic-hotspots with different urban networks
configurations (in Australia and Spain) have been
used in this study for comparison purposes. Those
have been selected to determine the applicability of
the models to different urban networks and identify
similarities in the emission calculation and emission
spatial distribution for those road configurations and
vehicle fleets.

3.3.1. Urban streets combination in Woolloongabba
(Brisbane)
Brisbane is the third biggest city in Australia with
a metropolitan population of roughly 2.3 million.
Figure 2 shows the selected area of 1250 m × 600 m

around the South Brisbane Air Quality monitoring
station inWoolloongabba (Coordinates:−27.484775,
153.032061). Located adjacent to the Pacific Motor-
way, the urban streets of Woolloongabba present a
complex interaction of different road types and traffic
conditions. The domain includes part of a highway
that redistributes the traffic to urban collectors and
from there to urban roads.

3.3.2. Plaza Elíptica signalized roundabout (Madrid)
Madrid is the capital city of Spain and has around
3.2 million inhabitants (up to 6.5 million in the
whole Madrid metropolitan area). The selected area
(300 m × 300 m domain) (figure 3), is a sig-
nalized roundabout—Plaza Elíptica—(Coordinates:
40.385251, −3.717599) that presents high vehicle
activity and a complex network configuration. Stop-
and-go traffic conditions are frequent in the area
(Quaassdorff et al 2016) and often result in high
pollution levels and strong concentration gradients
(Borge et al 2016).

3.3.3. Scenarios and fleet composition
Daily traffic patterns were analysed for both locations
in order to select two 1 h scenarios representative of
typical traffic conditions for weekday peak and off-
peak hours (Quaassdorff 2018). These are contrasting
scenarios that present different traffic flow (conges-
tion conditions) that have an effect on the breaking-
acceleration patterns of the vehicles and though
on the emissions of each vehicle trip (Quaassdorff
et al 2016). Peak hour traffic conditions (saturated)
with more acceleration-deceleration patterns with an
effect on the vehicle speed-time profiles are represen-
ted by the 16:30–17:30 p.m. period in Brisbane and
8:00–9:00 a.m. period for Madrid (local time in all
cases). Low intensity traffic typical of off-peak hours
(free-flow conditions) are studied through the 4:30–
5:30 a.m. and the 4:00–5:00 a.m. periods in Brisbane
and Madrid respectively. For those scenarios traffic
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Figure 3. Traffic microsimulation domain of 300 m× 300 m (black rectangle) in Plaza Elíptica square with red lines for traffic
lights. Reproduced with permission from (Quaassdorff 2018). CC BY-NC-ND 4.0.

Figure 4. Vehicle fleet composition for (a) Madrid off-peak, (b) Madrid peak, (c) Brisbane off-peak and (d) Brisbane peak
scenario. Detailed description of the vehicle classes can be found in table 1.

intensity estimated by the VISSIMmodel where com-
pared to field counts. For that kind of data, one of
the best statistics to assess the model performance is
the Geoffrey E. Havers statistic (GEH). This statistic
compare field data and simulations outputs for traffic
flows. Calibration acceptance target of GEH < 5 for
all links of a simulation is deemed as benchmark of
good performance. In this study, the GEH statistic
falls well below that calibration target for all the scen-
arios (Quaassdorff 2018).

Regarding fleet composition, the corresponding
vehicle fleets for each of the selected scenarios are
shown in figure 4. In the case ofMadrid, the informa-
tion is taken from the 2013Madrid vehicle fleet study
(Parque circulante 2014, Pérez et al 2019) and from
experimental campaigns data obtained in situ. In the
case of Brisbane, these data correspond to the default
vehicle fleet input data for the P∆P model, i.e. rep-
resentative of theQueensland vehicle fleet in 2010 and
from information provided by the traffic information

8
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system from Brisbane’s city. There are significant dif-
ferences between vehicle fleets, mainly regarding to
the diesel share in Madrid City (in brown colours in
figure 4). Additionally, the vehicle emission standard
distribution for each of the scenarios can be found in
SM table A2.

4. Results and discussion

4.1. Individual trip analysis for real-world
networks
To perform a comparison between vehicle classes for
real applications, in figure 5 1 h average NOX and
FC emission factors (g km−1) and the correspond-
ing NOX/FC ratio (fuel based emission factor) have
been calculated for each scenario and vehicle class and
compared for both modal models (PHEM-light and
P∆P). The comparison is done by using scatter plot
analysis and statistics that provide a measure on the
strength of the relationship between bothmodels and
main differences.

Resulting NOX/FC ratios are rather consistent for
all scenarios and all vehicle classes, with an R2 value
of 0.833. This suggest that bothmodalmodels provide
a consistent response under the whole range of con-
ditions tested. Nevertheless, as shown in figure 5,
significant differences appear on the calculation of
FC and NOX emissions factors in saturated condi-
tions (peak-hour) for some vehicle classes. This is
the case for Heavy-duty vehicles HDV-TT-D—AT-
diesel and Buses HDV-CO-D—BUS-H-diesel, which
present main differences of up to 40% for NOX and
60% for FC. This is in agreement with the compar-
ison of mesoscale traffic models performed by Borge
et al (2012). A good agreement is obtained overall
both for FC (R2 = 0.602) and NOX emission factors
(R2 = 0.689) as well as reasonable mean fractional
biases (12.0% and 6.4% respectively). This analysis
suggests that similar results can be achieved with any
of the two models, if consistent input information on
the vehicle fleet composition and vehicle character-
istics is provided. Nevertheless, future studies should
consider road load parameters to accurately include
country-specific fleet characteristics in the models.
Additionally, analyses over specific driving cycles are
included in SM section 2.

Instantaneous emissions are sensitive to speed-
time and acceleration profiles and thus, traffic con-
gestion conditions (included in section 3 from
the SM). As shown in figure 6, higher emission
factors (g km−1) are related to lower average speeds,
following the typical distribution considered in
average-speed mesoscale models such as COPERT
(Ntziachristos et al 2009). High traffic intensity pro-
duces congestion conditions associated to braking-
acceleration (stop-and-go) patterns. These stop-and-
go situations result in lower average speeds for a

specific trip (in comparison to the same trip in free-
flow conditions) and present higher values in emis-
sion predictions (g km−1), particularly for P∆P NOX

emissions which presents also larger spread. This sug-
gests that P∆P is more sensitive to variability in driv-
ing conditions. The variability of emissions factors
is in general inversely proportional to average speed
for both models. Nevertheless, maximum dispersion
occurs around 25 km h−1. Both emission models
present a more stable response for free-flow high
average speed, especially for FC (and consequently
CO2 emissions).

4.2. Emission distributionmaps
Second by second P∆P and PHEM-light emission
results and instantaneous location reports provided
by the traffic simulation model were used to pro-
duce high resolution emissionmaps. Themaps where
generated with ArcGIS® by aggregating the inform-
ation on instantaneous NOX emissions estimated by
the modal models (1 s emission data are given with
the corresponding coordinates) to the 5 m× 5 m res-
olution mesh used by the cycle variable model. For
comparison purposes with another type of model,
the cycle variable model VERSIT+micro through the
ENVIVER interface (version Enterprise 4.0 released
in 2016), emissions were represented on a 5 m× 5 m
resolution grid (figure 7 for Brisbane network and
figure 8 for Madrid network).

The emission maps obtained with the three mod-
els present similar spatial distributions consistently
identifying higher emissions around the main inter-
sections where vehicles have to queue waiting for
traffic signals to open. That increases acceleration
time, and thus, emissions, especially at peak hours
when more vehicles are in the network. Those very
high resolution maps also provide detailed inform-
ation on emission distributions that can be useful
to understand spatio-temporal emission variations
within a city and to feed microscale dispersion mod-
els to support air quality studies. Aggregated emission
values for 1 h scenarios are shown in table 2.

At scenario level, PHEM-light predicts higher
NOX emissions for Brisbane simulations than P∆P
(13% and 10% for the off-peak hour and peak hour
respectively). This is directly related to the domin-
ance of ADR79-00 (EURO2) petrol passenger cars in
these scenarios which present higher NOX emission
factor (SM section 4). This type of vehicle repres-
ents roughly 30% of the total vehicle fleet in Brisbane
scenarios, whereas inMadrid scenarios the equivalent
vehicles are only 4% to 10% of the fleet (SM section
1). On the other hand, for the signalized intersec-
tion in Madrid, P∆P NOX emissions are 39% higher
than those predicted by PHEM for the off-peak hour
scenario and 27% for the peak hour simulation. This
is in agreement with the results obtained over the
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Figure 5. Average emission factors for each vehicle class (single dots) and all scenarios (Madrid and Brisbane peak and off-peak).
NOX (g km−1) (left), FC (g km−1) (centre) NOX/FC ratio (right). Evaluation statistics: Pearson correlation coefficient (r),
coefficient of determination (R2), Mean Bias Error (MBE), Mean Fractional Bias (MFB), Mean Fractional Error (MFE), Root
Mean Squared Error (RMSE) and Index of Agreement (IOA).

Figure 6. NOX (above) and fuel consumption (middle) emission factors (g km−1) Vs trip average speed (km h−1) for
PHEM-light PC-G EURO3 to EURO5 (left)—P∆P PC-S-petrol ADR79-02 to ADR79-04 (right). Trips are taken from the
Brisbane off-peak hour scenario. Black dots are representative trips with speed-time- and acceleration profiles (below) for average
speed span of (1) and (2) 15 km h−1, (3) and (4) 50 km h−1, (5) and (6) 100 km h−1.
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Figure 7. NOX emission results for Brisbane off-peak (above) and peak (below) scenarios computed to a spatial resolution of
5 m× 5 m with PHEM-light (left), P∆P (centre) and VERSIT+micro (right).

individual trips presented in SM section 2. Compar-
ing themodal models to the cycle variable model, dif-
ferences are around 50% with the exception of the
Madrid off-peak hour scenario where P∆P predicts
higher total emissions for the domain. This scenario
does not include Heavy-duty vehicles (figure 4), cat-
egory where the main differences between modal and
cycle-variable models appear (70% higher emissions
for Heavy-duty vehicles in VERSIT+micro, figure 9).

There is a good agreement betweenVERSIT+micro

and P∆P for the passenger car category (figure 9 left
panel). This vehicle category represents the main per-
centage of the vehicle fleet in all scenarios (figure 4)
and shows differences below 6% with a coefficient of
determination (R2) that reaches a value of 0.79 and
a slope value of 1.06. The results suggest that modal
models predict significant lower values than the cycle
variable VERSIT+micro model, despite the fact they
reflect two different on-road fleets. Nevertheless, a
good agreement between the car category with P∆P
model has been found, which is interesting as both
PHEM-light and VERSIT+ reflect European fleets.

Further validation is required to determine the accur-
acy of each approach for different applications in
the EU.

In the case of road transport emission calculation,
model validation is a key issue but the effectiveness/
feasibility has to be taken into account. Specific val-
idation studies are needed in order to obtain inde-
pendent real-world emission measurements of suf-
ficient sample size to verify emission factors and
total emissions estimates. Comparison with inde-
pendent and measured data is important for valida-
tion purposes and should be considered as a future
work recommendation. For instance, in addition to
e.g. tunnel studies and remote sensing, PEMS provide
real-world emissions data for emissionmodel updates
and improvement (Franco et al 2013). The consid-
eration and continuous update of measured emis-
sion factors from the new Worldwide Harmonized
Light Vehicles Test Procedure (WLTP) and the Real-
world exhaust emissions tests is important because it
is widely accepted from the scientific community that
emissions values and FCmeasured in laboratory were
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Figure 8. NOX emission results for Madrid off-peak (above) and peak (below) scenarios computed to a spatial resolution of
5 m× 5 m with PHEM-light (left), P∆P (centre) and VERSIT+micro (right). Reproduced with permission from (Quaassdorff
2018). CC BY-NC-ND 4.0.

Table 2. Total NOX emissions (g h−1) for the four scenarios and the three emission models.

Scenario PHEM-light (g h−1) P∆P (g h−1) VERSIT+micro (g h
−1)

Brisbane off-peak 1359 1183 2731
Brisbane peak 14 360 12 863 25 196
Madrid off-peak 197 322 293
Madrid peak 4148 5702 7818

Figure 9. Emission factors comparison for Madrid peak scenario between VERSIT+micro and modal models (P∆P and
PHEM-light) for vehicle category Car (left), Bus (centre) and HGV (right).

underestimating emission levels obtained under real-
world driving conditions (i.e. Kadijk et al 2017, Luján
et al 2018). This validation process is an ongoing
process.

4.2.1. CFD coupling possibilities
CFD air quality models provide the opportunity to
estimate pollutant concentrations at very high spatial
and temporal resolutions. Urban hot-spot require

specific analysis in order to undertake appropriate
measures to reduce air pollution on those areas and
CFD models can provide solutions for specific urban
highly polluted areas when fed with detailed emission
information.

Cycle-variable models are useful for applications
where second by second resolution in not needed.
However, the information generated by the modal
emissionmodels is suitable to generate emissionmaps
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with temporal resolution up to one second and also
high spatial resolution (1 m × 1 m grid resolution
maps). The comparison of those models outcomes
opens the opportunity to find a compromise between
model complexity (and thus input information needs
and computational burden) and accuracy, so a single
modelling approach may be used for specific areas as
well as for larger domains. That would provide a con-
sistent view of traffic emissions across the scales.

At the high spatial resolution that modal mod-
els provide, traffic lanes with higher emissions rates
can be simulated and are a promising option to ana-
lyse local emission abatement measures effects since
they are suitable for high-resolution non-stationary
air quality modelling with CFD models. Neverthe-
less, a CFD analysis would require various scenarios
to reproduce the traffic fluctuations during a day and
for a representative week. This method has provided
good results in comparison to passive sampler’smeas-
urements by using cycle-variable emission outputs in
stationary CFD simulations (Sanchez et al 2017). It
is expected that instantaneous emissions provided by
modal models could be useful to provide the highly
detailed (spatially and temporally resolved) inputs for
dynamic CFD simulations. Those can also be used
for comparing emission predictions with independ-
ent measurements (road side air quality monitors)
to quantify prediction errors in future data valida-
tion processes. This approach will provide continu-
ously resolved evolution (in time and space) of pol-
lutant concentrations with high resolution in future
research steps.

5. Conclusions, study limitations and
future research opportunities

Regarding key variables to consider for microscale
emission calculation for the development of local
road traffic emission inventories, both P∆P and
PHEM-light use engine power algorithms to compute
instantaneous emissions and fuel consumption. Our
analysis suggests that vehicle classification is import-
ant. Differences in PtM ratio, rated engine power and
road load coefficients are key variables for emission
calculation for each vehicle category. It is essential to
adjust them to a specific study case to obtain similar
emission results when compiling road traffic emission
inventories, regardless of the specific model being
used. Furthermore, a larger number of vehicle classes
allowsmore flexibility to provide representative emis-
sions estimates. In this analysis hybrid and electric
vehicles have not been considered as part of the fleet
structure due to the low penetration in the analysed
scenarios. Nevertheless, with the foreseeable increas-
ing market penetration of these vehicles, their special
emission behaviour should be depictured more pre-
cisely in future studies to include also other pollut-
ants such as non-exhaust PM, which is still relevant
for electric vehicles (TER 2020).

Regarding the practical implications associated
with using different emission models, according to
the results, reasonably consistent emission estimates
can be achieved with any of the models, as long as
reliable information on the vehicle fleet composition
and vehicle characteristics is provided as input. Res-
ults show that NOX to FC ratios are in reasonable
agreement when comparing P∆P and PHEM-light
for the individual vehicle categories. P∆P tends to
predict higher emission factors than PHEM-light for
the main light-duty vehicle categories. The main dif-
ferences between models may relate to differences in
engine and emission control technology in the on-
road fleets, as well as other factors such as fuel quality,
inspection and maintenance programs and so forth,
which suggests that local calibration of vehicle emis-
sion models is essential for accurate modelling.

A larger spread in emission factors at low average
speeds demonstrates the variability and the difficulty
of accurately predicting emissions for stop-and-go
conditions under saturated traffic situations. Con-
gested conditions are usually the main cause for
hot-spots and air quality non-compliance situations
in urban areas. Modal models and cycle-variable
models provide specific emission estimates for these
conditions making them useful for a detailed analysis
in urban hot-spots where stop-and-go conditions are
more frequent. The VISSIM traffic model is useful to
support a wide range of emission computationmeth-
odologies at microscale, and this similarly applies to
other microscale traffic models such as AIMSUN.
The analysis of emission estimations for driving pat-
terns under different traffic conditions also reveals the
importance of the congestion levels in a road net-
work on the impacts on average speed and corres-
ponding elevated emission factors. So that the accur-
acy of the traffic simulation model to reproduce real
driving patterns is of special interest in future analysis.

The results from this study suggest that modal
models predict significant lower values than the cycle-
variable VERSIT+micro model at road network level.
Nevertheless, a good agreement between P∆P and
VERSIT+ micro has been found for passenger vehicles
(R2 of 0.79). VERSIT+micro predicts emissions twice
as high as PHEM-light for this vehicle category, which
represent more than 90% of the vehicle fleet in Mad-
rid, resulting in substantial differences for total emis-
sions. Further validation with independent data is
required to determine the accuracy of each approach
for different applications in the European Union and
overseas.

Instantaneous emission information obtained
with modal models is suitable to generate emis-
sion maps with high spatial and temporal resolu-
tion of up to 1 m × 1 m and 1 Hz. They provide
cost-effective and fast emission estimates for dif-
ferent traffic scenarios for non-stationary CFD air
quality modelling in urban areas. Nevertheless, real-
world emission measurements are essential towards
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the validation of emission factors and total emissions
computed by these modelling techniques. Also con-
tinuous updates of measured emission factors from
the new WLT Procedure and the Real-world exhaust
emissions tests should be used to update emission
algorithms in modal models. This validation process
should be understood as an ongoing process to con-
tinue in the future and remain as a limitation of this
study.
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